
ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

1

The ISIS NeXus RAW Data file Format

This paper should be considered as “work in progress” and presents a first draft of a new ISIS RAW
data file structure, which is based on the NeXus data format [1]. The proposal has been formulated
through meetings of the ISIS NeXus Working Group [2] and is based on information from external
sources [1,3-7] as well as discussions with members of the ISIS facility. The ISIS Muon community
are already making use of NeXus files [7]; this format will aim to encompass their current scheme and
be used for Muon RAW data files produced by ISIS DAE-II electronics.

The paper is mostly a collection of group (class) definitions for items that describe an ISIS instrument,
the components of an experiment and the data collected. You should not need to be a NeXus expert to
understand this paper. The idea is to draw attention to the names and types of information that are
proposed for the file, the goal being that any which are missing or not in the correct category (or
type/size) to suit a given or proposed experiment/instrument will be spotted. So far work has
concentrated on the primary and utility classes; expert input on the instrument component classes
(flippers, polarizers etc.) is still required.

Though ISIS is free to use whatever format it wishes for its own RAW files, if this can be matched to
an international standard it will assist in data sharing and analysis code portability. A formalisation of
the NeXus standard is due to take place in September 2003 [8]

The classes presented here have been based on the current NeXus definitions [1,3], with differences
detailed in the text. A tabular form has been used for clarity, but XML DTD versions (as used on the
NeXus web site [9]) are available from http://www.isis.rl.ac.uk/computing/NeXus/xml/

For more information and document updates see http://www.isis.rl.ac.uk/computing/NeXus

Please feed any comments and/or additions back to ISIS NeXus Working Group [2]
(isis_nexus@isise.rl.ac.uk)

Freddie Akeroyd (Freddie.Akeroyd@rl.ac.uk)
Format Editor, ISIS NeXus Working Group

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

2

Contents
Introduction .. 3

Philosophy.. 3
NeXus Structure ... 3
Mandatory and Optional Items... 4
Differences from Current Published NeXus Format .. 4
Conventions Used in this Document .. 5
Identifying Mandatory and Optional Components ... 5
Date and Time .. 5
Units ... 5
Storage of Text and Simple LOG Information (NX_TEXT) ... 5
Coordinates/Positions/Orientations/Distances.. 6
Size and Shape ... 7
Special Array Size variables... 7
Enumerated Strings .. 7
NXlog Variable Names .. 7
Case Sensitivity .. 7
Data compression ... 7
Array Ordering Convention.. 7
Type Fields... 8
Standard Variable Names... 8
NeXus API Extensions... 8
Periods and the SCANNED attribute ... 8

Primary Classes .. 9
NXfile... 9
NXentry.. 11
NXrun... 13
NXuser ... 15
NXdata ... 16
NXlog... 18
NXsample... 19
NXenvironment.. 22
NXsensor.. 23
NXinstrument ... 25

NXInstrument Component Classes .. 26
NXsource.. 26
NXmoderator.. 27
NXaperture... 28
NXdetector ... 29
NXmonitor ... 34
NXchopper ... 35
NXdae .. 37
NXcollimator.. 38
NXattenuator .. 39
NXbeam ... 40
NXbeam_stop... 41
NXcrystal ... 41
NXguide ... 43
NXpolarizer.. 44
NXflipper ... 44

Utility Classes .. 45
NXdistance ... 45
NXorientation... 45
NXposition ... 46
NXnote ... 47
NXnotebook ... 47

Acknowledgements .. 48
References .. 49

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

3

Introduction
This document is a draft specification for an ISIS RAW data file within the framework of the NeXus
data format [1,3]. ISIS is committed to providing standard NeXus data files for its users, but has also
chosen to use the NeXus format for its RAW data files. NeXus currently provides a convenient set of
subroutines for storing data in a portable way, but details such as the names under which these data
items are accessed has not been finalised. Recently, a NeXus standards committee [8] was set up with
the goal of agreeing version 1.0 of the NeXus data format - the committee is scheduled to meet in
September 2003. This is an ideal point for ISIS to consider its future data storage and representation
needs and how these might be handled within the NeXus format.

The details and benefits of NeXus, or how files are accessed, will not be covered here – this
information is already well documented [1] and is not the aim of the paper. The purpose of this
document is to IDENTIFY all the information that one might wish to store in a RAW data file and so
enable standard names and locations for them to be assigned. Please note that not all of the information
identified here will be relevant for all instruments and/or all experiments; however it is important to
identify as much as possible now to minimise the risk of any subsequent addition causing problems.
Important things to identify are:

• Is enough information specified to enable a simulation/repeat of the experiment
• Is a quantity specified sensibly and uniquely (e.g. coordinates, units, reference direction)
• Is a quantity always a scalar, or could it be an array in some circumstances
• Could a quantity vary with time/period during an experiment and is this allowed for properly
• How does the definition compare to other standards (e.g. CIF [6]) – can it store the same

information

Philosophy
NeXus was devised as an exchange file format i.e. a common standard for sharing data between
different establishments; this document details the proposed use of NeXus as a RAW data file format at
ISIS and so addresses some different issues. Though this scheme has been devised with ISIS in mind, it
should be general enough to handle most data and its creation throws up some interesting issues and
discussion points.

RAW data file are archived and provide a historical record of work at the facility and the performance
of instruments – from an “exchange file” point of view, much of this sort of information is irrelevant.
RAW data files may also contain extra monitoring information – the experiment could have run
automatically overnight and control parameters might have wandered more than planned, which would
need to be checked during analysis. RAW data files also need to store information on all the individual
detectors so any that are later found to be “noisy” can be excluded from analysis; in an exchange file
the data may have undergone a first round of detector grouping and/or data reduction. The efficient
representation of the detector configuration is thus much more important for the RAW data file.

At ISIS all instruments currently run a common data acquisition and control system, use a common
RAW data file format and can use the same general program (GENIE) for first-line data analysis. To
allow this to continue, the new structure must be flexible enough to store data from any ISIS instrument
in a way that a generic program can interpret. Achieving this adds some complications, such as
indexing data against indirect quantities (“spectrum” and “period”) to allow arbitrary parameter
variation, but provides a very general mechanism.

NeXus Structure
Think of a NeXus file as like a “file system” and you will not be far wrong. A NeXus file consists of a
set of “folders”(groups) containing “information” - each folder (group) has an associated “class”,
which determines the names and contents of files (and other folders) that can appear within it. Like a
file system, NeXus has a hierarchy and some classes must be present in certain location. Also, like a
file system, items (files or folders) can be linked (different locations pointing at the same data).

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

4

NeXus defines the following basic data types:

NeXus Type Typical C

Equivalent
FORTRAN
Equivalent

Description

NX_INT8 /
NX_UINT8

char / unsigned char INTEGER*1 signed / unsigned 8 bit integer

NX_INT16 /
NX_UINT16

short / unsigned
short

INTEGER*2 signed / unsigned 32 bit integer

NX_INT32 /
NX_UINT32

long / unsigned
long

INTEGER*4 signed / unsigned 32 bit integer

NX_FLOAT32 float REAL*4 32 bit floating point
NX_FLOAT64 double REAL*8 64 bit floating point
NX_CHAR char CHARACTER 8 bit character

All of these basic types can be declared as arrays; strings are handled as one dimensional NX_CHAR
arrays. The use of “Typical” for the “C” declaration stems from C only defining a minimum size for a
basic type: “long” must be at least 32 bits, is exactly 32 bits on most computers, but is 64 bits on
computers running the HP Tru64 operating system.

NeXus is pseudo object oriented – it supports classes, but not inheritance. In a fully object oriented
system you could have a general instrument class and then derive/subclass special instances of e.g.
powder diffractometer. When a program examines a file and asks for “NXinstrument”, it would be
automatically given “NXpowderdiffractomer” as this is a subclass of “NXinstrument”. Unfortunately,
this feature is not available in HDF [10] upon which NeXus is based. Maybe it would be useful is
NeXus considered adding this – possibly via a “parent” or “superclass” attribute?

A NeXus file contains three sets of quantities: a description of the instrument, the data collected during
the experiment and additional information on things like sample environment and experimental
procedure. Ideally NeXus classes should correspond to “real world” object and their use aid with
structure and understanding. NeXus already defines several classes (e.g. NXsample, NXchopper), but it
may be sensible to split things further. For example, the NXmoderator class was not in the original
specification and details for the moderator were instead stored as part of the “source” (NXsource).

The layout of the instrument should be specified in the single instance of the NXinstrument class,
which will contain various members (NXchopper, NXdetector, NXmoderator etc.) whose spatial
locations are specified by their NXposition members. The instrument is broken down into
“components” that can be assembled to re-generate the experimental setup – ideally there should be
enough information in the file to allow a simulation to be performed of the experiment. The NXsample
class will contain information about the entity under investigation during an experiment, with details of
the sample environment equipment used contained within instances of NXenvironment.

Mandatory and Optional Items
Not everything mentioned here will be present in every NeXus file - the programming interface does
not make any restrictions on what can be put into a file or how it should be named. The current plan is
to just name all that might be useful - in another iteration of the standard, what is optional and what is
mandatory for a given type of instrument will need to be defined; otherwise it will be impossible to
check a NeXus file as “conforming to the standard” except at the most basic level. Currently an XML
DTD or schema [9] is envisioned to specify the file contents and to validate against – the name of the
DTD/XML schema used will be attached to the appropriate NXentry in the “analysis” variable.

Differences from Current Published NeXus Format
The following are notable – for others see under the individual class descriptions:

• Three new data type notations have been introduced – they are implemented as standard
existing data types, but signify the contents should be interpreted in a specific way

o NX_BINARY: An array of unsigned 8 bit integers (NX_UINT8), but containing
arbitrary binary data and not plottable numbers e.g. an image in the NXnote class

o NX_BOOLEAN: An NX_INT32, but only ever set to 0/1 for False/True
o NX_TEXT: An NX_CHAR array, but with a specific convention for indicating “end

of line”, “timestamp” and “next entry”; for e.g. simple log messages – see below
• The concept of “periods” and the use of the “scanned” attribute (see below)

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

5

• The “distribution” attribute (on NXdata to differentiate “counts” and “counts per units axis”)
• NXposition, NXdistance and NXorientation classes for specifying and linking instrument

component positions
• NXnote and NXnotebook classes for messages and other data (e.g. images)
• NXdae (optional) for facility specific details of the Data Acquisition Electronics and/or details

of the current running acquisition system
• Introducing the idea of “components” to NXsample and creation of NXenvironment and

NXsensor classes
• Introducing the idea of “spectra” to NXdetector and enabling efficient storage of array

detectors

Conventions Used in this Document
The Name column in a table identifies an item in an instance of a NeXus class. Items can have extra
“meta data” associated with them, which are called attributes – these, if any, are listed in the next few
lines in the attributes column. Any variables in the attributes column are always attached to the
previous variable in the Name column above them; if the Name of the variable is the same as the class
(e.g. NXfile), then the attributes are associated with an instance of that class (global) and not any of its
members.

Identifying Mandatory and Optional Components
The following convention will be used:

• Variables in bold in the Name column of tables are mandatory – they must be present in ALL
NeXus files; otherwise they are optional and their inclusion will depend on the instrument,
experiment or presence of other items in the class (see the class description of usage)

• Variables in {italics} in the Name column are examples of names and any variable name can
in fact be used; variable names in normal type mean that exact name must be used

This information is also included in a RE column (the name derives from the fact that a “Regular
Expression” is used in the XML DTD [9]). Thus:

Font/style in Name
Column

RE
Column

Meaning XML
DTD [9]

Something 0/1 A single instance of this variable may be present
(optional) – if it is, it must be called “something”

?

Something 1 A single instance of this variable must be present
(mandatory) and called “something”

{Something} 0+ Zero or more variables of this type/class may be
present (optional) and can have any unique name(s)

*

{Something} 1+ One or more variables of this type/class must be
present (mandatory), but can have any name(s)

+

The above convention dictates that the name for any item that occurs only 0 or 1 times is fixed; this is
not required by the current NeXus standard, but would add clarity and ease of location if implemented.

Date and Time
Date and time are stored in ISO8601 format [12] (e.g. 1996-07-31T21:15:22+0600). This time format
only allows for ABSOLUTE time, so for delta (relative) time another scheme is needed (see NXlog).
The +0600 refers to the time zone, with +Z meaning UTC. Sub second times are supported by
specifying “.xxx” after the seconds.

Units
Unit names should be specified in the singular (“second” rather than “seconds”) as per UDUNITS [11].
All physical quantities should have the “units” attribute (NX_CHAR data type) set to the appropriate
value. It is intended that the NeXus interface will support unit conversions, but until this is available it
is recommended that values are stored in the preferred unit (see the description section of each
individual units entry).

Storage of Text and Simple LOG Information (NX_TEXT)
Lines of text should be stored in a one dimensional NX_CHAR array with the line terminator “\r\n” i.e.
<carriage return><line feed>; to break a section of text from another, use the form feed character “\f”

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

6

followed by “\r\n”. A time stamp, if any, for the entry should be placed on a separate line before the
text with the word “TIMESTAMP” (in capitals) in front e.g.

TIMESTAMP:1996-07-21T21:55:22+0600\r\n
My message line 1\r\n
My message line 2\r\n
\f

Coordinates/Positions/Orientations/Distances
The instrument is set up in a “global” coordinate system with the MCSTAS convention of:

• Z axis points in the direction of the incident beam
• X axis is perpendicular to the incident beam in the horizontal plane, pointing left as seen from

the source
• Y axis points upwards perpendicular to the beam in the vertical plane

The origin of coordinates is arbitrary, but all components in the file must either agree on its absolute
location or use relative positioning. One choice of origin is the sample position, but on instruments
with very large moving samples this is not so useful. An alternative choice is the “scattering centre”,
the point in space at which all the detectors are focussed. One advantage of the “scattering centre” is
that the spherical polar coordinate specifications of the detector positions are then conveniently related
to scattering angles and lengths for direct geometry instruments. To allow for generality, an origin
member has been defined in NXentry; its use will be detailed shortly.

Individual components of the instrument (e.g. jaws) will have their own set of local axes (x,y,z) which
will be fixed to their body in a way defined by their shape. These local axes will probably not coincide
with the global instrument axes and so a set of rotation angles will also need to be stored. For this an
NXposition class is defined, along with NXdistance and NXorientation; the hope is to provide a
general enough method for relating the location of any object with respect to another object. The
mechanism also allows for specifying one position relative to another component: a NeXus file link is
made in one instance of an NXposition object to another NXposition object and a program can then
traverse the chain of links to calculate an absolute position.

NeXus does not need to define absolutely where to place the “origin”. All components can instead be
declared with a relative position that ultimately follows a chain back to one object; this will be named
“origin1”, be of class NXposition and a member of NXentry. The real space location of this origin is
chosen for convenience and should be mentioned in the description attached to “origin1”. If the origin
is taken at the sample, then “sample.position.distance” will always be (0,0,0) relative to “origin1”; if
the origin is taken elsewhere this will not be so, but everything will still work. It may be convenient to
define extra origins (similar to “arms” in MCSTAS) at other parts of the instrument. For example,
defining one at the centre of a circular array of detectors would allow their positions to be conveniently
specified in spherical polar coordinates. Another possibility would be to define the sample relative to
“origin1” and the detectors to “origin2”; the detectors could then be rotated by a rotation of “origin2”
without modifying NXdetector.

As well as specifying the component location, it is also necessary to specify the beam direction. Unless
otherwise given in an NXbeam member of the component, the incident beam is assumed to be
travelling along (0,0,+z) in the coordinate system of the object (or origin) our position was defined
relative to. Thus, for a component with absolute positioning the beam will always be in the incident
beam direction unless specified by an NXbeam member.

The above mechanism may seem overcomplicated and is not definitely decided upon. For example, is
the option to specify relative instrument component positions really needed? It was included so a
NeXus file might be used as input to a simulation program where relative positions are a convenient
way to specify the setup. An alternative to an NXposition class would be e.g. separate three element
distance and orientation arrays in each NeXus class which needed them (or even just NX_FLOAT32
position[7] containing: type (“Cartesian”, “spherical”), 3 distances and 3 angles). The advantage of an
NXposition would come when NeXus was hooked up to an object based scripting language: as the
numbers would then be associated with the NXposition class, operator overloading could be used to
specify how positions would “add” and “subtract” etc. and methods defined for “NXposition” objects
to provide easy conversions between coordinate frames.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

7

Size and Shape
Many instrument components define “height” and “width” variables to specify their size when
rectangular, a “radius” variable for when circular etc. Rather than all these different names, an
alternative scheme is proposed based on the “shape” of the object and the local coordinate axes this
shape defines. All object would just need to specify a shape (“cuboid”, “cylinder” etc.) and a size
array. Specifying size[3] would give the dimensions of the object along its local (±x,±y,±z) axes;
specifying size[6] would give the extent along (+x,+y,+z,-x,-y,-z) and allow for e.g. asymmetric jaws
where the reference point may not be the centre of the rectangle. For example take shape=“cylinder”:
the NXdistance variable of position would define the location of the reference point for the origin of
the local axes: z in the direction of the cylinder axis, x and y in plane. With no rotation the object
would be oriented with its local axes pointing in the direction of axes of the object it was defined
relative to, but this can be altered with the NXorientation variable within position. If a size[3] array
variable was specified, the reference point must be the centre of the cylinder and the dimension are
size[0]=size[1]=radius, size[2]=length/2). If size[6] was specified then the reference point would be
elsewhere in the object, with its distance from the cylinder edges along the various axes given by
elements of the size[6] array. See NXsample for an example of usage.

Special Array Size variables
The following variables are used in tables:

np The array is of a size equal to the number of periods in the run
ntc Number of time channels on the NXdetector (the will thus be

ntc+1 boundary values for the histogram)
ns Number of spectra on the NXdetector
nd Number of detector elements on the NXdetector
nda Number of 1D PSD detectors in a 2D array in NXdetector
n_comp Number of components to the NXsample

Enumerated Strings
An enumerated string is a string variable (NX_CHAR array) whose contents should only be one of a
list of specified values. In the description section this is represented as:

“string1” | “string2” | “string3”

The value, if present, must be either “string1”,
“string2” or “string3” etc.

NXlog Variable Names
Names of form “*_log” are always entries of type NXlog – they show the time dependence of the
corresponding quantity “*”. For example, the temperature variable would store the average temperature
and the time dependence, if specified, would be stored in the variable temperature_log of type NXlog

Case Sensitivity
Variable names in HDF files are case sensitive and so NeXus has chosen to use lower case names of
variables wherever possible to avoid confusion.

Data compression
Arrays can be individually stored in compressed format – an option just needs to be selected when the
data is written. As compression can be time consuming, it is likely that the ISIS RAW file will be
initially written out uncompressed and then converted to a compressed format offline. Compression can
also solve the problem of data duplication – storing a large array containing the same number takes up
little space with “run length encoding” and so allows a general case to be considered without a storage
penalty for simple cases.

Array Ordering Convention
The C language convention is used in this document, which is “fastest varying array index last”. Thus
the entry a[np,3] in a table is equivalent to the C declaration a[np][3] and corresponds to np blocks of 3
items arranged sequentially. If you were to read such an item into a FORTRAN program, you would
declare the same array as A(3,NP) - FORTRAN indexes arrays “column wise” rather than “row wise”.
This convention is purely typographic and does not have any bearing on the efficiency of using the
array in either language.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

8

Type Fields
Often a “type” field is needed in a NeXus class – having this as NX_CHAR and using an “enumerated
string” is descriptive, but it has the disadvantage that a reading program has to do string comparisons to
determine a course of action. Using an integer number to represent each possible case is quicker for an
analysing program and less error prone (no misspelling or case issues), but is less descriptive (you need
to examine a separate document to determine what the number means). Maybe the answer is to store
both in separate “type_name” and “type_code” fields?

Standard Variable Names
While a program can search for instances of a given class, it is easier if standard names are used for
certain common quantities. Suggestions are:

• A variable named *_env is always of type NXenvironment and is related to a variable called *
• A variable named *_log is always of type NXlog and related to a variable called *
• Any extra information on a class is stored in a member called either notes or notebook

o The notes class member is always of type NX_TEXT
o The notebook class member is always of type NXnotebook

• The description of a class is always stored in the description member of type NX_CHAR
• The spatial location of an object is always called position and of type NXposition
• Information about the (neutron) beam is contained in the beam variable of class NXbeam
• The name of an NXdata variable is the same as the NXmonitor or NXdetector instance it

refers to
• Coordinate origins should always be of class NXposition and named origin1, origin2 etc.

NeXus API Extensions
It would be useful to know where a NeXus link is to, and what is linked to a given object. Would it be
possible for this for be written into “forward_link” and “backward_link” attributes automatically by the
interface?

Periods and the SCANNED attribute
At ISIS the memory of the Data Acquisition Electronics can be blocked into sections call “periods”.
At a given time, all detector output will be going into a specific period – changing a period is similar to
starting a run except:

• It is a very quick operation as no data is copied to the host computer (only a memory pointer is
moved in the electronics)

• Periods can be triggered by an external signal source to the electronics on a “frame by frame”
basis as well as from the control computer

• You can go back and resume counting in a previous period as data memory is not cleared
Periods are often used for cycling round a set of experimental conditions – detector positions as well as
sample environment may change. To describe this, the SCANNED attribute has been defined. If this
attribute is present and set to TRUE, the quantity concerned will be an array with the “slowest varying
dimension” of size [np], the number of periods. In accordance with the array convention mentioned
above, [np] will always be written first in the array dimensions list.
Though a period is similar to having an extra dimension to the raw data of e.g. “number of temperature
steps”, it is far more general - many quantities (pressure, temperature, detector position etc.) may be
varied simultaneously.

Connecting Detectors and Monitors with Data
A simple scheme has been chosen where the name used for the detector bank (class NXdetector) or
monitor (class NXmonitor) is also used for the corresponding NXdata class instance containing the
counts. There is no name clash as the NXdetector/NXmonitor instance is “one level down”, hidden in
the NXinstrument class.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

9

Primary Classes

NXfile
NXfile is not a real class in the NeXus file – it is just a convenient name under which to group the
global attributes (properties/variables) of the NeXus file (the class is also referred to as NXroot)

RE Name Attribute Type Value Description
 NXfile Top level class

1 file_name NX_CHAR File name of original NeXus
file

To assist in
identification if the
external name has been
changed

1 file_time ISO 8601 Date and time of file creation
1 file_update_time ISO 8601 Date and time of last file

update/modification/change

1 nexus_version NX_CHAR Version of NeXus programs
(API) used in writing the file

1 hdf_version NX_CHAR Version of NCSA HDF library
used by NeXus to create file

1 creator NX_CHAR Name of user producing the file This is different to user
doing the experiment
(NXuser)

0/1 affiliation NX_CHAR Affiliation of creator
0/1 address NX_CHAR Postal address (complete) of

creator

0/1 telephone_number NX_CHAR Telephone number of creator international format
0/1 fax_number NX_CHAR Fax number of creator
0/1 email NX_CHAR E-mail address of creator
1 file_changes NX_TEXT Brief log of changes to the file Automatically updated

by NeXus interface

1 checksum NX_CHAR checksum checksum computed
from all data arrays;
may be digitally
“signed”

0/1 checksum_type NX_CHAR checksum algorithm used Assume MD5 if not
present

0/1 signature NX_CHAR Pointer to digital signature
certificate

Its presence indicates
the checksum has been
signed

0/1 signature_type NX_CHAR Checksum signing method e.g. PGP

1 unique_id NX_CHAR UUID identifying this file
uniquely

Automatically changed
if file is modified

1+ {entry1} NXentry First entry First item in file will be
the raw data;
subsequent entries may
be analysed data etc.

Differences from Current NeXus Standard
The user attribute has been renamed creator – this is what it really refers to; the “user” of the
instrument (experimenter) is specified in the NXuser class within NXentry. Also new are:

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

10

file_update_time, file_changes, cksum, cksum_type, signature, signature_type, and unique_id.
It would be useful to know the last time the file was written to as well as when it was created; this can
be determined by the interface and inserted automatically into file_update_time. Also the interface
could automatically keep a brief log of updates to the file in the change_log variable – things like the
date classes were added or modifed (user supplied comments would be added to the NXentry notebook
variable instead)
Data integrity and validation have not been discussed so far. Though a full mechanism is not presented,
producing a checksum of all data in the file and then optionally signing this would cover most
eventualities – encryption could be done externally or maybe HDF will support it?

Notes
The NXentry class is the only class allowed at the top level of the file and there must be at least one
instance of it. The DTD specifying the NXentry definition is contained within it, but is one needed for
NXfile as well? As most of the global variables are added by the interface maybe this is linked to
nexus_version attribute?

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

11

NXentry
This is the top level NeXus group and contains a complete set of measurements (a “run” at ISIS).
Conventionally separate instances of NXentry are named “entry1”, “entry2” etc. It is mandatory that
there is at least one group of this type in the NeXus file.

RE Name Attribute Type Value Description
 NXentry name of entry

0/1 type NX_CHAR “raw” | “processed” type of information
stored in entry

1 title NX_CHAR Main title for the
whole entry

1 analysis NX_CHAR Analysis name This specifies the
template the entry was
based on i.e. the name
of the definition file
giving mandatory and
optional fields.

1 URL NX_CHAR http://some.where URL of XML DTD or
schema

1 Version NX_CHAR $Revision: $ XML DTD version e.g.
1.0.0; inserted
automatically by CVS

1 start_time ISO8601 Start time of entire
measurement

1 end_time ISO8601 End time of entire
measurement

1 duration NX_FLOAT32 Duration of data
collection
measurement

This will not be “start-
end” as data may not
be collected at all times
due to e.g. a
temperature going out
of range

1 Units NX_CHAR second

1 run NXrun details of the run

1 run_number NX_INT32 Unique identification
number of run/scan
stored in this entry

1 run_cycle NX_CHAR The current scheduled
machine operation
period

0/1 program_name NX_CHAR Name of program
used to generate file

1 version NX_CHAR Generating Program
version number

0/1 command_line NX_CHAR Contents of any
command line used to
generate file

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

12

1 notebook NXnotebook Log of useful stuff
(history) about the
experiment supplied
by the user

1+ {user1} NXuser Details of users
involved with the
experiment

1 sample NXsample sample Details of the sample
under investigation

1 instrument NXinstrument instrument name Details of the
instrument used

1+ {bank1} NXdata data The data collected; this
is named after the
corresponding
NXdetector in the
NXinstrument group

1 program_notes NX_TEXT Log from instrument
control program (dates
of period changes,
CAMAC waiting etc).
begins, ends, pause,
resume etc

1 experiment_identifier NX_CHAR Experiment
identifier/number

For ISIS, the
RB/proposal number of
the experiment

1+ {origin1} NXposition Origins for relative
component placement

origin1 is the global
instrument reference
point

Differences from Current NeXus Standard
New variables: type, run_cycle, program_notes, experiment_identifier, run (class NXrun), origin
(class NXposition) and notebook (NXnotebook). The NXnotebook class is detailed later and is a
collection of NXnote entries for the run. The NXmonitor instance has been moved to NXdetector and
there can be multiple instances of NXuser.
The global instrument origin is indicated by the member origin1; all position can be done relative to
this. Additional origins can also be created if they are useful – they should be named origin2, origin3
etc.
Would it be more logical to rename analysis as template?

Notes
NXdata members are named the same as their corresponding NXdetector and NXmonitor members in
NXinstrument

ISIS Notes
A place is needed for the contents of DAE-II focussing memory

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

13

NXrun
This class contains information about the experiment that has been separated from NXentry for
convenience.

RE Name Attribute Type Value Description

 NXrun Name of run

1 period_start_time ISO8601[np] First time each
period started

 “First” needed as
periods may be cycled

1 Scanned NX_BOOLEAN 0 | 1

1 period_end_time ISO8601[np] Last time each
period ended

“Last” needed as
periods may be cycled

1 Scanned NX_BOOLEAN 0 | 1

1 period_duration NX_FLOAT32[np] Time spent in the
period

Summed over all period
cycles

1 Units NX_CHAR second

1 Scanned NX_BOOLEAN 0|1

1 period_cycles NX_INT32[np] Number of times
data collection took
place in each period

If zero, space was
allocated for the period
but it was not used; if
greater than one,
periods were cycled
(repeated)

0/1 short_title NX_CHAR[np] A per period title

1 scanned NX_BOOLEAN 0 | 1

1 total_charge NX_FLOAT32 Total charge (integrated
beam current) in all
periods

1 Units NX_CHAR Micro.amp.hour

1 total_raw_frames NX_INT32 Total number in all
periods

1 total_good_frames NX_INT32 Total number in all
periods

1 charge NX_FLOAT32[np] Charge (integrated
beam current) in each
period

1 Scanned NX_BOOLEAN 0 | 1

1 Units NX_CHAR Micro.amp.hour

1 raw_frames NX_INT32[np] Raw frames for each
period

1 Scanned NX_BOOLEAN 0 | 1

1 good_frames NX_INT32[np] Good frames for each
period

1 Scanned NX_BOOLEAN 0 | 1

Differences from Current NeXus Standard
This class does not exist in the current NeXus standard and most of its members are new; the use of
periods is covered in the introduction.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

14

Notes
The period_start_time variable is only updated once data collection has actually began

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

15

NXuser
Definition of experiment user contact information

RE Name Attribute Type Value Description
 NXuser Name of user

0/1 Local_contact NX_BOOLEAN 0 | 1 TRUE is the user is an ISIS
staff member assigned to
assist with the experiment

0/1 Primary_user NX_BOOLEAN 0 | 1 TRUE if the primary
user/investigator (e.g.
experiment proposer)

1 Name NX_CHAR Full name of user Surname, first name(s) e.g.
Other, A. N.

0/1 Affiliation NX_CHAR Institute

0/1 Address NX_CHAR Full postal
address of user

0/1 Telephone_number NX_CHAR Telephone numbr
in international
format

e.g. +441234567890 use ; to
separate multiple numbers if
required

0/1 Fax_number NX_CHAR Fax number in
international
format

e.g. +441234567890 use ; to
separate multiple numbers if
required

0/1 Email NX_CHAR Email address e.g. a.n.other@rl.ac.uk

1 User_identifier NX_CHAR Unique facility
based identifier
for this user

User number at ISIS

0/1 role NX_CHAR role of user e.g. “co-investigator”

Differences from Current NeXus Standard
primary_user, role, user_identifier and local_contact are new; there can be multiple instances of
NXuser

Notes
The suggestion of primary_user is taken from Cooper et al. [4]; there is only one primary user.
Though information in NXuser may quickly become out of date (people move, phone numbers and
email addresses change) it provides a useful historic record when the file is archived. If the
“user_identifier” field is present, it could be used to locate the current address of the user in the
facility’s user database. The NXuser class could also be used in subsequent NXentry instances to
record information about the person who is analysing the data stored in the entry.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

16

NXdata

Definition of plottable data and their dimension scales. It is mandatory that there is at least one group
of this type in each NXentry group. The "signal" and "axes" attribute of the "counts" item define which
items are plottable data and which are dimension scales.

RE Name Attribute Type Value Description
 NXdata Name of data

0/1 calibration_status NX_CHAR “nominal” | “measured”

1 counts NX_INT32[np,ns,ntc] data values

1 Signal NX_CHAR 1 Identifies the
main plottable
array

1 Axes NX_CHAR “[time_of_flight,spectrum_index,period]”

1 Long_name NX_CHAR “neutron counts”

1 units NX_CHAR “counts”

1 Checksum NX_INT32

1 time_of_flight NX_FLOAT32[ntc+1] time channel bin boundaries linked to
NXdetector
variable; need
NX_FLOAT64?

1 Long_name NX_CHAR “time_of_flight”

1 Units NX_CHAR Micro.second Might want to
use clock pulses
instead for
accuracy

1 Axis NX_INT32 1 1 = fastest
varying array
index

1 Distribution NX_BOOLEAN 0 pure counts

0/1 first_good_bin NX_INT32 location of first bin with meaningful data

0/1 last_good_bin NX_INT32 location of last bin with meaningful data

0/1 t0_bin NX_INT32 location of “time zero” bin

1 spectrum_index NX_INT32[ns] global spectrum number: linked to
NXdetector
variable

1 Long_name NX_CHAR “spectrum_index”

1 Units NX_CHAR none

1 Axis NX_INT32 2

1 Distribution NX_BOOLEAN 0 pure counts

1 period NX_INT32[np] period number

1 Long_name NX_CHAR “period_number”

1 Axis NX_INT32 3

1 units NX_CHAR none

1 Distribution NX_BOOLEAN 0 pure counts

1 title NX_CHAR Title for data/plot

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

17

Differences from Current Standard
The distribution attribute is new. If this is 1 (true) the counts are per unit axis; if 0 (false) just pure
counts; if not present, assume true (i.e. counts/units axis). Why is it needed? The units field alone is not
enough to help us. For example the counts we may have normalised to the total duration of the
experiment (time) and so the units will be counts / time, but this time is not “time_of_flight”.
At ISIS an errors array is not stored with RAW data as this can be calculated by sqrt(counts). The
current NXdata standard only allows for one errors array – we propose that the errors array should be
called “*_errors” and refer to variable “*”. An alternative would be to have an attribute “errors” on the
major variable giving the name of the errors arrays, in the same way as the “axes” variable does for
dimension scales.
first_good_bin and last_good_bin indicate which part of the data range is meaningful – counting may
have started before real data had arrived. The t0_bin indicates the centre of the Muon pulse [7]

Notes
The histogram_offset variable is not set as the data is being stored as “real histograms” and not “bin
centres”. The “Axis” attribute is the old method of indicating dimension scales – it will be written for
ISIS Muon backward compatibility.

ISIS Note
Need to decide where spectrum 0 (unassigned detector output) and time channel 0 (data collected
before timing has started) will go. spectrum 0 could go to NXdae and time channel 0 be stored as
normal in NXdata, but with first_good_bin set accordingly.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

18

NXlog

Definition of logged information, i.e. information monitored during the run. They contain the logged
values and the times at which they were measured in either ISO 8601 format, or as elapsed time since
the beginning of the run. This method of storing logged data helps to distinguish instances in which a
variable is a dimension scale of the data, in which case it is stored in an NXdata group, and instances in
which it is logged during the run, when it should be stored in an NXlog group.

RE Name Attribute Type Value Description
 NXlog Name of log

0/1 Time ISO8601[i] Time of logged entry

0/1 delta_time NX_FLOAT32[i] Relative time of
logged entry

0/1 units NX_CHAR second

0/1 delta_offset ISO8601 Origin of delta_time Probably a link to the run
start time in NXentry

1 Value NX_FLOAT32[i,n] value of logged
variable

1 Units NX_CHAR

0/1 raw_value NX_FLOAT32[i,n] raw value of logged
variable

e.g. millivolts from a
thermocouple

0/1 Units NX_CHAR

1 Description NX_CHAR Description of
measured quantity

Differences from Current NeXus Standard
ISO8601 only allows absolute time so to specify relative time (e.g. from the start of run) we have
proposed the delta_time and delta_offset members An alternative would be to still use the ISO8601
string, but define a leading “+” character to mean “relative time”
The original NXlog definition has temperature, electric_field etc as separate entries in the NXlog. We
also feel [4] this is too restrictive on logging times and prefer a separate NXlog per variable (value); in
addition the raw_value from a sensor can be recorded. All variables of type NXlog should be named
“*_log” so they can be tied up to a nominal quantity “*” if it is present. The description field is also
new.
The value array has been made multidimensional to allow vector (n=3) or tensor (n=6) quantities to be
stored. The order for storing symmetrical tensor values (such as stress) needs to be specified e.g. T[i,j]
with {i,j}={1,1}{2,2}{3,3}{2,1}{3,2}{3,1}

Notes
There could be a lot of logging information, but it all needs to go somewhere and the NeXus file is as
good a place as any. If a value is repeated or changes very little, compression should help.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

19

NXsample
Definition of the sample under investigation. With very few exceptions, samples are usually measured
whilst inside a container inside the chosen sample environment, and the scattering or absorption from
the container must be corrected for in the final analysis. It could be argued that the container is part of
the sample; it could, just as easily, be argued that the container is part of the sample environment
apparatus. Either way, we must allow for this somehow.
To complicate matters further, many samples are multi-component (e.g. metal alloys, a polymer in a
solvent, a polymer blend, an oil-in-water emulsion stabilised by adsorbed surfactant, water condensed
in Vycor, a magnetic multilayer, adsorbates on a catalyst, etc.). A single sample formula, or scattering
cross-section, or unit cell, etc., is inadequate to describe the actual sample being investigated. To
overcome this, we define most elements as arrays of size n_comp and treat the sample can as part of
the sample. An extra array “sample_component” indicates whether a component is “of interest” or
“part of the kit” (and hence allowed for later in a calculation)

RE Name Attribute Type Value Description
 NXsample Name of sample

1 name NX_CHAR Sample identification
code

1 type NX_CHAR “sample” |
“sample+can” | “can” |
“calibration sample” |
“normalisation sample”
| “simulated data” |
“none” | “sample
environment”

1 situation NX_CHAR “air” | “vacuum” |
“inert atmosphere” |
“oxidising atmosphere”
| “reducing
atmosphere” | “sealed
can” | “other”

The “atmosphere” will be one of the
components, which is where its details
will be stored; the relevant component
will be indicated by the entry in the
sample_component member

0/1 changer_position NX_CHAR Position on sample
changer

Was NX_INT32, but NX_CHAR is more
general

1 description NX_CHAR Description of the
sample

0/1 preparation_date ISO8601 Date of preparation of
the sample

1 shape NX_CHAR “sphere” | ”shell” |
”cuboid” | ”cylinder” |
”tube”| ”single crystal”
| “general”

general will require more thought

1 position NXposition The position and
orientation of the
reference point
(probably centre) of the
sample

The meaning of centre will be defined by
the sample shape

0/1 scanned NX_BOOLEAN 0 | 1 The sample may move/rotate

0/1 beam NXbeam Details of beam
incident on sample

used to calculate sample/beam
interaction point

1 Component NX_CHAR[n_comp] Details of the
component of the
sample and/or can

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

20

1 Sample_component NX_CHAR[n_comp] “sample” | “can” |
“atmosphere” | “kit”

Or use an NX_INT32 instead?

0/1 Chemical_formula NX_CHAR[n_comp] Empirical chemical
formula of each
component

0/1 Molecular_weight NX_FLOAT32[n_comp] Molecular weight
(C=12) of each
component

0/1 Concentration NX_FLOAT32[n_comp] Concentration of each
component

1 units NX_CHAR g.cm-3

0/1 Volume_fraction NX_FLOAT32[n_comp] Volume fraction of
each component

0/1 Density NX_FLOAT32[n_comp] Density of each
component (g cm-3)

0/1 Scattering_length_density NX_FLOAT32[n_comp] Scattering length
density of each
component (cm-2)

0/1 Coherent_cross_section NX_FLOAT32[n_comp] Coherent cross section
of each component
(fm)

0/1 Incoherent_cross_section NX_FLOAT32[n_comp] Incoherent cross
section of each
component (fm)

0/1 Absorption_cross_section NX_FLOAT32[n_comp] Absorption cross-
section of each
component (fm)

0/1 Unit_cell NX_FLOAT32[n_comp,6] Crystallographic
a/b/c/alpha/beta/gamma

0/1 unit_cell_class NX_CHAR[n_comp] "cubic" | "tetragonal" |
"orthorhombic" |
"monoclinic" |
"triclinic"

Not very descriptive, but may be the only
information available

0/1 Unit_cell_volume NX_FLOAT32[n_comp] Volume (nm3) of the
unit cell of each
component

0/1 unit_cell_group NX_CHAR[n_comp] Crystallographic point
or space group

0/1 Mass NX_FLOAT32 Mass of sample (g)

0/1 size NX_FLOAT32[3] Size of sample along its
local “x”, “y” and “z”
axes

The sample axes directions are defined
by its shape and rotate with it

0/1 units NX_CHAR mm

0/1 inner_size NX_FLOAT32[3] Inner dimensions of the
sample along its local
“x”, “y” and “z” axes if
it is hollow

The sample axes are defined by its shape

0/1 units NX_CHAR mm

0/1 path_length NX_FLOAT32 Path length through
sample/can (mm)

For simple case when it does not vary
with scattering direction

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

21

0/1 path_length_window NX_FLOAT32 Thickness of a beam
entry/exit window on
the can (mm)

assumed same for entry and exit
windows

0/1 orientation_matrix NX_FLOAT32[n_comp,3,3] Orientation/UB matrix
of a crystalline sample

See [13] for definition

0/1 Transmission NXdata As a function of
Wavelength

0/1 temperature NX_FLOAT32 copy of temperature_env.sensor1.value

0/1 units NX_CHAR Kelvin

0/1 temperature_log NXlog temperature_log.value is a link to
temperature_env.sensor1.value_log.value

0/1 temperature_env NXenvironment Additional sample environment
information

0/1 Magnetic_field NXenvironment copy of
magnetic_field_env.sensor1.value

0/1 units NX_CHAR Tesla

0/1 magnetic_field_env NXenvironment Additional sample environment
information

Examples of other possible environment variables are: electric_field, conductivity, resistance, voltage,
pressure, flow, stress, strain, shear, surface_pressure.

The temperature_log cannot be directly linked to temperature_env.sensor1.value_log as the names of
the two entities are different; instead the contents of the two NXlog entries must be linked i.e.
temperature_log.value to temperature_env.sensor1.value_log.value etc. For the same reason,
“temperature” must be specified as a copy of “temperature_env.sensor1.value” rather than a link

The sample location is specified by the position, shape and size variables (see “size and shape” section
in the introduction). The size variable gives the outer dimension of the sample in terms of its local
(rotated) axes; if the sample is hollow, inner_size can be specified in the same way.
The beam member gives details of the incident beam direction (plus other optional information) on the
sample. Combining this direction with the sample position allows the point of sample-beam interaction
to be determined, which is important if the sample is larger than beam. While this method covers most
simple shapes, a “general” shape would probably require specifying intersecting surfaces and an
NXshape class.

The path_length_window variable is required for multiple scattering corrections when scattering from
the can is taken into account. The straight through beam would traverse [path_length_window] +
[path_length(sample)] + [path_length_window]. However, for complex samples path_length may have
to be calculated from the sample shape for each detector.

Appropriate background correction for some sample environments is complicated by the fact that in the
ABSENCE of the sample neutrons simply don’t get scattered through anything like the same range of
angles as in the sample measurement. One way around this is to employ simulations, hence the
inclusion of “simulated data” in the Type field.

Differences from Current NeXus Standard
The introduction of sample components, the NXenvironment class and size/shape variables for sample
dimensions are new. Also symmetry_cell_settings has been renamed to unit_cell_class for consistency
with the other unit_cell_* variable naming.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

22

NXenvironment
Information about equipment used and the conditions that it imposes on e.g. the sample

RE Name Attribute Type Value Description

 NXenvironment Name of sample
environment

1 type NX_CHAR “cryostat” | “furnace” |
“pressure cell” | “water
bath” | “CCR”

Type of apparatus.

1 name NX_CHAR Apparatus identification
code/model number

e.g. “OC100-011”

1 short_name NX_CHAR Alternative short name SE name from ISIS
scheduling database?

1 description NX_CHAR Description of the
apparatus

e.g. “100mm bore orange
cryostat with Roots
pump”

1 program NX_CHAR Computer program
controlling the apparatus

e.g. LabView VI name

0/1 position NXposition The position and
orientation of the
apparatus

0/1 scanned NX_BOOLEAN 0 | 1

1 notebook NXnotebook Additional information e.g. LabView logs, digital
photographs, equipment
setup details etc

1+ {sensor1} NXsensor First sensor

Differences from Current NeXus Standard
This is a new class for storing “sample environment” information

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

23

NXsensor

RE Name Attribute Type Value Description

 NXsensor Name of sensor

1 model NX_CHAR Sensor identification
code/model number

1 name NX_CHAR Name for the sensor

1 short_name NX_CHAR Short name of sensor e.g. “TEMP1”, the
dashboard display

0/1 attached_to NX_CHAR “sample” | “can” Where sensor is
attached (“sample”
if not present

0/1 position NXposition Defines the axes for
logged vector
quantities if they
are not the global
instrument axes

1 measurement NX_CHAR “temperature” | “pH” |
“magnetic_field” | “electric
field” | “conductivity” |
“resistance” | “voltage” |
“pressure” | “flow” | “stress” |
“strain” | “shear” |
“surface_pressure”

What the sensor
measures, but can
we get this uniquely
from units instead?

1 type NX_CHAR

Temperature: “J” |”K” |”T”
|”E”|”R”|”S” |“Pt100”|”Rh/Fe”
pH: ”Hg/Hg2Cl2”|”Ag/AgCl”|
”ISFET”
Ion-selective electrode: specify
species; e.g. “Ca2+”
Magnetic field: “Hall”
Surface pressure: “wilhelmy
plate”

Sensor hardware
type

0/1 Run_control NX_INT32[np] -1=none, 0=value,
1=value_deriv1 etc

Indicates if data
collection is
synchronised with
the sensor value

0/1 scanned NX_BOOLEAN 0 | 1

0/1 High_trip_value NX_FLOAT32[np] Upper control bound of sensor
reading

Only if run control

0/1 Units NX_CHAR

0/1 scanned NX_BOOLEAN 0 | 1

0/1 Low_trip_value NX_FLOAT32[np] Lower control bound of sensor
reading

Only if run control

0/1 Units NX_CHAR

0/1 scanned NX_BOOLEAN 0 | 1

1 Value NX_FLOAT32[np,n] nominal setpoint or average
value

Setpoint or average
value

1 Units NX_CHAR

0/1 scanned NX_BOOLEAN 0 | 1

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

24

0/1 Value_deriv1 NX_FLOAT32[np,n] Nominal/average first
derivative of value

We may run control
on e.g. strain rate

0/1 Units NX_CHAR

0/1 scanned NX_BOOLEAN 0 | 1

0/1 Value_deriv2 NX_FLOAT32[np,n] Nominal/average second
derivative of value

0/1 Units NX_CHAR

0/1 scanned NX_BOOLEAN 0 | 1

0/1 Value_log NXlog Time history of sensor readings

0/1 value_deriv1_log NXlog Time history of sensor readings

0/1 value_deriv2_log NXlog Time history of sensor readings

0/1 External_field_brief NXCHAR “along beam”|”across
beam”|”transverse”|”solenoidal”
| ”flow-shear gradient”|”flow-
vorticity”

“along beam” |
”across beam” |
”transverse” |
”solenoidal” |
”flow-shear
gradient” | ”flow-
vorticity”

0/1 External_field_full NXorientation For complex external fields not
satisfied by External_field_brief

For complex
external fields not
satisfied by
External_field_brief

Differences from Current NeXus Standard
This is a new class

Notes
Value is defined as NX_FLOAT32[np,n] - usually n=1 (scalar), but n=3(vector) and n=6 (symmetrical
tensor) are also possible.
Value_log is a continuous time log over all {np} periods. While the setpoint/average value will be
calculated (or recalculated if periods are cycled) separately for each period, to get the time dependence
of a quantity the values of period_start_time and period_end_time from NXentry must be used and the
correct time range extracted. If periods are cycled, this will not be possible as multiple
period_start_times are not recorded.
There will be a NXenvironment group for every different piece of SE apparatus in use during the
experiment for which the data is being collected; e.g. a pressure cell experiment might require the use
of a “vertical height stage” (1 value to set/log), a “horizontal translation stage” (1 value to set/log),
the “pressure cell” (1 pressure sensor to log), a “temperature controller” (2 temperature sensors to
set/log), and possibly a “fluid bath” (1 temperature sensor to set/log) and/or a “pH sensor” (1 value to
log), making a possible 6 instances of NXenvironment and 7 entries under NXlog

Some Recommended Units for Value
Temperature: “Kelvin” | “Celsius”
Ion-selective electrode: “ppm”|”Molar”
Magnetic field: “Tesla” (also “Gauss”|”Oested”?)
Electric field: “volts/metre”
Conductivity: “microsiemens/cm”|”micromho/cm”|”ppm”
Resistance: “ohms”|”kilohms”|”megaohms”
Voltage: “volts”|”millivolts”|”microvolts”|”kilovolts”
Pressure: “Pascals” (also “kilopascals”| “bar”| “kilobar”| “mm Hg”?)
Flow: “litres/min”|”ml/sec” (also “gallons/hour?)
Stress: “newtons/metre”|”pascals”
Strain: “percent”
Shear: “per second”
Surface pressure: “millinewtons/metre”

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

25

NXinstrument
Definition of instrument descriptions comprising various beamline components. Each component will
be a NeXus group defined by its position relative to some origin (see “coordinates/positions” in the
introduction).

RE Name Attribute Type Value Description
 NXinstrument Name of instrument

1 Source NXsource Source

0/1 Moderator NXmoderator Moderator

0+ {Aperture} NXaperture Name of beamline aperture

0+ {Attenuator} NXattenuator Name of beam attenuator

0+ {Chopper} NXchopper Name of chopper

0+ {Collimator} NXcollimator Name of collimator

0+ {Crystal} NXcrystal Name of crystal analyser /
monochromator

0+ {Flipper} NXflipper Name of beam polarisation
flipper

0+ {Guide} NXguide Name of beam guide mirror

0+ {Polarizer} NXpolarizer Name of beam polarizer

1+ {bank1} NXdetector Name of detector bank

0+ {Monitor1} NXmonitor Name of monitor

0+ {Beam_stop1} NXbeam_stop

0/1 Type NX_CHAR “elastic”,”inelastic”,”direct etc.

1 Long_name NX_CHAR Full name of instrument e.g. “PRISMA”

1 Short_name NX_CHAR instrument abbreviated name At ISIS, the 3 letter
abbreviation e.g.
“PRS”

0/1 Description NX_CHAR Description of instrument

0/1 URL NX_CHAR Web address of
description/manual

Differences from Current NeXus Standard
NXmonitor has been moved to NXinstrument so there is no name clash with an NXdata used to store
the monitor counts; also NXmirror has been renamed as the general NXguide. As well as some new
classes (NXbeam_stop etc.) long_name, short_name, description, type, and url are introduced

Notes
The name of an NXdetector or NXmonitor instance in NXinstrument matches that of an NXdata
instance in NXentry and corresponds to data from that detector/monitor.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

26

NXInstrument Component Classes

NXsource
This class describes global properties of the beam as a whole as opposed to that part which reaches the
sample (which is situated after “NXmoderator”)

RE Name Attribute Type Value Description
 NXsource Name of source

1 Name NX_CHAR Facility name

1 Type NX_CHAR "Spallation Neutron
Source" | ”Pulsed Reactor
Source” | ”Reactor Neutron
Source” | “Synchrotron X-
ray Source”

1 Probe NX_CHAR “neutrons” | “muons” | “x-
rays”

1 Frequency NX_FLOAT32 Frequency of pulsed source
at the target

“at target” allows for
ISIS TS-2 where the
main proton beam will
be split with 1 in 5
pulses diverted to the
second target

1 Units NX_CHAR Hertz

1 Power NX_FLOAT32 source power at target

1 Units NX_CHAR Mega.watt

1 Current NX_FLOAT32 nominal source current at
target

1 Units NX_CHAR Micro.ampere

1 Voltage NX_FLOAT32 nominal source voltage at
target

1 Units NX_CHAR mega.electronvolt

1 target_material NX_CHAR "W" | ”Ta” | ”Depleted U” |
”Enriched U” | ”Hg” | ”Pb” |
”C”

0/1 Notes NX_TEXT Source/facility related
messages or announcements
during the experiment

At ISIS, the MCR beam
messages

0/1 Pulse_width NX_FLOAT32 Source pulse width Proton pulse at ISIS

0/1 Units NX_CHAR

01/ pulse_shape NXdata Source pulse shape

Differences from Current NeXus Standard
current and voltage are defined rather than proton_current and proton_voltage for generality; also
period can be removed if frequency is taken to mean “frequency at target”. The probe member is new
and also is a notes member for storing any source/facility related messages. The old moderator
member has been moved to a separate NXmoderator class

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

27

NXmoderator
Properties of the moderator that the instrument is looking at

RE Name Attribute Type Value Description
 NXmoderator Name of moderator

1 Position NXposition

1 Moderator NX_CHAR "H20" | ”D20” | "H2" | "CH4"

1 Width NX_FLOAT32

1 Units NX_CHAR cm

1 Height NX_FLOAT32

1 Units NX_CHAR cm

1 Thickness NX_FLOAT32

1 Units NX_CHAR cm

1 Angle NX_FLOAT32 angle of moderator face normal to
incident beam

1 Units NX_CHAR degree

1 poison_depth NX_FLOAT32

1 Units NX_CHAR Cm

1 poison_material NX_CHAR "Gd"|"Cd"|...

0/1 temperature NX_FLOAT32 temperature

0/1 Units NX_CHAR Kelvin

0/1 temperature_log NXlog log file of moderator temperature

0/1 pulse_shape NXdata moderator pulse shape

Differences from Current NeXus Standard
This is a new class – moderator information was formerly stored in NXsource

Notes
Store the resolution function as well?

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

28

NXaperture
Definition of a beamline aperture e.g. slits,jaws

RE Name Attribute Type Value Description
 NXaperture Name of aperture Name of

aperture

1 position NXposition location and orientation of aperture

1 Scanned NX_BOOLEAN 0 | 1

1 description NX_CHAR

1 shape NX_CHAR "Rectangular" | "Circular" |
"Elliptical" | “slit”

1 size NX_FLOAT32[np,6] dimensions of aperture

1 units NX_CHAR

0/1 scanned NX_BOOLEAN 0 | 1

0/1 beam NXbeam Details of incident beam

0/1 material NX_CHAR Material used for aperture

Differences from Current NeXus Standard
This class has been greatly simplified by use of shape and size variables as detailed in the introduction.
For slits, the infinite dimension is indicated by a zero in the corresponding element of the size array

Notes
Think about motor positions....

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

29

NXdetector

Definition of a detector, detector bank, or multidetector

RE Name Attribute Type Value Description
 NXdetector Name of detector

1 description NX_CHAR description/model

1 shape NX_CHAR “cuboid” | “cylindrical” Shape of each
detector
element; may
need to be an
array, so should
change to
NX_INT32

1 spectrum_index NX_INT32[ns] List of global spectrum
numbers

Global spectrum
numbers are
unique across all
NXdetector
instances

1 detector_index NX_INT32[ns] DETECTOR_INDEX[i] is
the location of first detector
of spectrum
SPECTRUM_INDEX[i] in
the array
DETECTOR_LIST[nd]

See below for
full explanation
of usage

0/1 detector_count NX_INT32[ns] DETECTOR_COUNT[i] is
the total number of
detectors forming spectrum
SPECTRUM_INDEX[i]

If this is absent,
assume 1
detector per
spectrum

0/1 detector_list NX_INT32[nd] Sorted List of detector
numbers for fast lookup

If this is absent,
it is assumed to
have elements
rising
sequentially
from 1 to nd

0/1 detector_code NX_INT32[nd] A unique user supplied
code number for each
detector

Used to indicate
e.g. the bank or
location. May
want this [nda]
instead

0/1 detector_wiring NX_INT32[nlines,7] Alternative to
using
crate/slot/input

0/1 Crate NX_INT32[nd] The crate number detector card
number at ISIS

0/1 Slot NX_INT32[nd] slot number At ISIS the
module (DIM)
number

0/1 Input NX_INT32[nd] input number At ISIS the
module position
input

1 time_of_flight NX_FLOAT32[ntc+1] time channel bin
boundaries

linked to
NXdata

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

30

 units micro.second

1 primary_flight_path NX_FLOAT32 distance from “timing point
0” to scattering point

The ISIS L1
value

1 Units NX_CHAR Metre

1 Calibration_status NX_CHAR “nominal” | “measured”

0/1 Distance NX_FLOAT32[np,nda] Flight path length from
scattering point to detector

The secondary
flight path (L2)
value at ISIS

1 Scanned NX_BOOLEAN 0 | 1

1 Units NX_CHAR Metre

1 Calibration_status NX_CHAR “nominal” | “measured”

1 array_type NX_INT32 0 | 1 | 2 For 0 (non
array), 1D or 2D
array. This
determines
whether angles
are calculated or
supplied.

0/1 two_theta NX_FLOAT32[np,nda] Scattering (Bragg) angle of
detector element

1 Scanned NX_BOOLEAN 0 | 1

1 Units NX_CHAR Degree

1 Calibration_status NX_CHAR “nominal” | “measured”

0/1 azimuthal_angle NX_FLOAT32[np,nda]

1 Scanned NX_BOOLEAN 0 | 1

1 Units NX_CHAR Degree

1 Calibration_status NX_CHAR “nominal” | “measured”

0/1 solid_angle NX_FLOAT32[np,nda] Solid angle subtended by
detector at sample

1 Scanned NX_BOOLEAN 0 | 1

1 Units NX_CHAR steradians

1 Calibration_status NX_CHAR “nominal” | “measured”

1 Type NX_CHAR[nda] He3 gas cylinder | He3
PSD" | "He3 multidetector"
| "BF3 gas" | "scintillator" |
"fission chamber" | “ZnS
scintillator PSD”

1 size NX_FLOAT32[nda,3] Size of detector element

1 units NX_CHAR

0/1 gas_pressure NX_FLOAT32[nda] Detector gas pressure

1 Units NX_CHAR Bar

1 absorption_cross_section NX_FLOAT32[nda]

1 Dead_time NX_FLOAT32[nda] Delay before
detector can
count again

 units NX_CHAR micro.second

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

31

1 Hold_off NX_FLOAT32[nda] Delay in
detector
registering event

 units NX_CHAR micro.second

1 Efficiency NXdata Efficiency v Wavelength

0/1 beam NXbeam Information on incident
beam direction

1 pixel_type NX_INT32[nda]

0/1 Pixels_x NX_INT32 number of pixels along
local x coordinate

0/1 Pixels_y NX_INT32 number of pixels along
local y coordinate

0/1 Pixel_size_x NX_FLOAT32[pixels_x+1] Use array for
rise-time coded
detectors

0/1 units mm

0/1 Pixel_size_y NX_FLOAT32[pixels_y+1]

0/1 units mm

0/1 Resolution

0/1 position NX_FLOAT32[np,nda,6] position and orientation of
the centre of (reference)
detector element

Contents as for
NXposition

Arrays of size [nd] or [nda] e.g. gas_pressure can be given as size [1], in which case they apply to all
elements. If the origin of global coordinates is taken at the “scattering centre”, then specifying position
in spherical polar coordinates gives the equivalent information to (distance, two_theta, azimuthal
_angle). For use of the nda array variable see the section on array detectors below; for the moment
assume nda = nd.

The detector_code variable is a way to assign a reference number to a detector for diagnosis purposes;
these number should be unique, but need not be contiguous. For example you may number all bank 1
detectors 1XXXX etc

At ISIS, data is collected per spectrum rather than per detector; often there will be a one to one
mapping between the two, but detectors can be ganged together and so (ns <= nd). The proposed
detector <-> spectrum indexing scheme is as follows. There are nd detectors {i} numbered i=[1,nd].
These detectors will have been attached to crate[i], slot[i]and input[i] of the electronics and have
scattering angle two_theta[i] etc The output from these nd detectors will be mapped into ns spectra. As
the global “spectrum number” must unique amongst all monitors and detectors the spectrum_index[j]
array gives the ns unique global spectrum numbers for this NXdetector instance. To map between
global spectrum number and detector we use the detector_list, detector_index and detector_count
arrays. The detector_list array contains a list of detector numbers {i}, but they are arranged such that
detectors which map to the same spectrum number appear sequentially. Spectrum spectrum_index[j]
will thus have detector_count[j] detectors mapped into it, the actual detector numbers being given by
detector_list[k],detector_list[k+1] … detector_list[k+detector_count[j]-1] where k = detector_index[j]

For comparison, if we used the same indexing method as the existing ISIS RAW file, we would not
need detector_list, detector_index or detector_count; instead we would have spectrum_index[nd] which
would directly give the spectrum number for a given detector. Though the old RAW file scheme is
simpler, there is no direct information about how many and which detectors map to a given spectrum –
you need to search the spectrum_index[nd] array each time to determine this.

While we will generally have only one NXdetector instance, one case in which we would need two is if
multiple time regimes (not all detectors with the same time_of_flight array) was implemented. In ISIS

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

32

DAE2 each detector card in the acquisition electronics can, in fact, have a different set of time channel
boundaries.

The NXdata corresponding to the detector bank has the same name as the detector bank itself (no name
clash as they are at different levels in the NeXus hierarchy). An alternative would be to have a link to
the NXdata directly in the NXdetector?

Two detector mapping schemes are provided: (crate,slot,input) or (detector_wiring). If the
detector_wiring variable is present, it will contain nlines of the following 7 integers which can be used
to generate (crate,slot,input) arrays:

Crate Slot input_start input_increment detector_start detector_increment detector_end

For example the two lines:

1 1 1 1 1 1 16000
1 2 1 1 16001 1 32000

would assign the inputs 1 to 16000 on (crate=1,slot=1) sequentially to detector numbers 1 to 16000 and
the same inputs on (crate=1,slot=2) to detector numbers 16001 to 32000. For large detector arrays, this
mapping scheme presents a considerable space saving.

Array Detectors (array_type variable > 0)
For a bank of one dimensional position sensitive array detectors, or a full two dimensional detector,
two_theta etc. can be calculated from the detector geometry and need not be stored in the file. The
presence of a PSD is indicated by the array_type variable and, though there are still nd detectors in the
bank, the nda variable is no longer equal to nd

Value of array_type variable Value of nda Meaning
0 nd two_theta etc. supplied for all

nd detectors
1 >=1 We have nda linear PSD

detectors and will supply one
value for each tube; other values
will be calculated. The local x
axis is defined to be along a
tube and pixels_y=1

2 1 We have a 2D PSD and will
calculate all scattering
parameters.

The reference point (origin of axes) used by the position variable for a PSD detector is taken to be the
centre of the bottom right detector element/pixel as viewed from the moderator. Detector numbers
raster along the x axis (i.e. by row if there is no rotation) from bottom right to top left as viewed from
the moderator; we have chosen right to left so increasing detector number follows increasing x by our
axes convention. To instead raster by column or from left to right you merely need to specify a rotation
in the position variable. From the position of the reference element and the pixel size, it is possible to
calculate all scattering parameters for the array.

Differences from Current NeXus Standard
polar_angle has been removed as it was part of the spherical polar coordinate description of the
location of a detector element – this is now covered by position. Instead we now include two_theta
and have generalised distance to “secondary flight path length” for the detector.

Notes
The position variable of a detector element is only sufficient to calculate scattering parameters if the
neutron follows a direct path to it from the scattering point. In other cases distance and two_theta will
need to be supplied – often these will have been obtained via calibration (“measured”) rather than
calculation.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

33

Need to find place for efficiency_file, coordinate_file_x, coordinate_file_y, mask_file, resolution_file..

Need to add detector_code into detector_wiring scheme

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

34

 NXmonitor

Definition of monitor data; it is similar to the NXdetector group but also include integrals, or scalar
monitor counts, which are often used in both in both pulsed and steady-state instrumentation.

In addition to the values listed here, any variables defined in NXdetector can also be specified.

RE Name Attribute Type Value Description
 NXmonitor

1 detector NXdetector Any members of
NXdetector may be used

0/1 Integral NX_FLOAT32 Integral of monitor
spectrum

0/1 Range NX_FLOAT32[2] Range integral performed
over

0/1 units NX_CHAR micro.second

0/1 Integral_log NXlog Log of monitor integral As per ISIS Beam log
process

0/1 area_sampled NX_FLOAT32 Proportion of beam
sampled

Do we want a % or an
absolute area?

Differences from Current NeXus Standard
area_sampled is new

Notes
To interpret beam efficiency it is necessary to know what proportion of the beam is sampled by the
monitor, hence the “area_sampled” variable. An alternative would be to include an NXbeam member
and then work this out from the position of the monitor.
The data for the monitor is stored in an NXdata member with the same name as the monitor.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

35

NXchopper
Definition of a beamline chopper, e.g., disk chopper or Fermi chopper.

RE Name Attribute Type Value Description
 NXchopper

1 Position NXposition Description of
chopper

1 Type NX_FLOAT32[:] "Fermi" |"disk" |
"counter rotating
disk" | "double disk”

0/1 hole_shape NX_CHAR “rectangle”

0/1 hole_size NX_FLOAT32[3]

1 Frequency NX_FLOAT32[:] positive
frequency
gives anti-
clockwise
rotation about
z

1 Units NX_CHAR Hz

1 frequency_log NXlog

1 Radius NX_FLOAT32 Radius of chopper

1 Units NX_CHAR Cm

0/1 Curvature NX_FLOAT32 Radius of curvature
of fermi chopper

0/1 Slit_width NX_FLOAT32 Width of fermi
chopper slits

0/1 Units NX_CHAR Cm

0/1 Blade_width NX_FLOAT32 Width of fermi
chopper blades

0/1 Units NX_CHAR Cm

0/1 Slit_number NX_INT32 Number of fermi
chopper slits

0/1 Energy NX_FLOAT32 Energy transmitted
by chopper

0/1 Calibration_status NX_CHAR nominal | measured

0/1 Delay

0/1 Trigger_log NXlog Log of trigger pulses

0/1 phase NX_FLOAT32 Nominal/specified
Chopper phase

0/1 Phase_log NXlog Log of chopper
phases

0/1 Tilt_angle

0/1 Sync_signal NX_CHAR Chopper
synchronisation
source

e.g. SMP

0/1 Opening_angle For double
disk choppers

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

36

0/1 absorbing_material NX_CHAR for fermi
chopper

0/1 transmitting_material NX_CHAR for fermi
chopper

Differences from Current NeXus Standard
phasing_log has been renamed to phase_log to tie up with “phase”. Period has been removed as it is
directly related to frequency. New items include: sync_signal, opening angle

Notes
A counter rotating chopper is described by two instances of NXchopper; frequency has been defined to
include a sense of rotation, so + and – values will be used in the two instances

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

37

NXdae
Special details of the data acquisition electronics used. The class will be highly institute specific and
was created as a place to keep information about the running data acquisition system in case the NeXus
file was used as a parameter file by the computer control program. It could also be used to store
information useful for diagnostic purposes.

RE Name Attribute Type Value Description
 NXdae

1 Clock_frequency NX_CHAR

1 Frames_per_period NX_INT32 Frames for each
hardware period

1 Period_map NX_INT32[:] Hardware period map
array

1 Vetos NXveto Define NXveto class?

1 Frame_sync_source NX_CHAR TOF | Internal |
External

TOF | Internal |
External

1 trigger_source NX_CHAR internal | external

1 Dae_memory NX_INT32

1 type NX_CHAR “DAE1”,”DAE2” “DAE1”,”DAE2”

1 interface NX_CHAR “SCSI” | “VME”

1 Veto_Frames NX_INT32[]

1 notes NX_TEXT Any special notes

1 poslut NX_INT32[] position lookup table DAE2 detector position
lookup table

1 run_status NX_INT32 Current run state 0=setup, 1=running, -
1=paused, -2=waiting

1 monitor_spectrum NX_INT32 spectrum number to
display on dashboard

1 current_period NX_INT32

1 period_type NX_INT32 0=software,
1=hardware

1 frame_sync_delay NX_FLOAT32 frame sync delay in clock cycles

Differences from Current NeXus Standard
New class

Notes
We may store ISIS spectrum 0 here. Also check on TCM and TCP.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

38

NXcollimator

Definition of a beamline collimator.

RE Name Attribute Type Value Description
 NXcollimator

1 Position NXposition Location and orientation
of centre of collimator

1 Type NX_CHAR soller | radial | oscillating
| honeycomb

1 Length NX_FLOAT32 (vane) Length of
collimator

1 Units Cm

1 Soller_angle NX_FLOAT32 Angular deflection of
soller collimator

Angular deflection of
soller collimator

1 Units milli.radians

1 Horizontal_aperture NX_FLOAT32 Front Horizontal
aperture (if rectangular)

1 Units cm

1 Vertical_aperture NX_FLOAT32 Front Vertical aperture
(if rectangular)

1 Units cm

1 Radius NX_FLOAT32 Front Radius of aperture
(if circular)

1 Units milliradians milliradians

1 Divergence_x

1 Divergence_y

0/1 frequency NX_FLOAT32 Frequency of oscillating
collimator

0/1 frequency_log NXlog

0/1 blade_thickness NX_FLOAT32

0/1 blade_spacing NX_FLOAT32

0/1 absorbing_material NX_CHAR

0/1 transmission_material NX_CHAR

0/1 entrance_shape NX_CHAR

0/1 exit_shape NX_CHAR

Differences from Current NeXus Standard

Notes
For radial collimators the "aperture" size at the front combined with vane length and the angular
divergence in both planes you can calculate the exit aperture.
Should use shape/size convention instead of “radius” and “horizontal_aperture”

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

39

NXattenuator

Definition of a beamline attenuator.

RE Name Attribute Type Value Description
 NXattenuator

1 Position NXposition

1 description NX_CHAR Description of
attenuator

1 Thickness NX_FLOAT32 Along beam direction Along beam
direction

1 Units NX_CHAR Cm

1 Scattering_cross_section NX_FLOAT32 Coherent + incoherent

1 Units NX_CHAR Barns

1 Absorption_cross_section NX_FLOAT32

1 Units NX_CHAR Barns

1 Transmission NXdata

1 Width NX_FLOAT32

1 Units NX_CHAR cm

1 height NX_FLOAT32

1 Units NX_CHAR cm

1 Radius NX_FLOAT32

1 Units NX_CHAR cm

1 material NX_CHAR “Pb” | “Polythene” |
“Perspex”

Differences from Current NeXus Standard

width, height, radius new

Notes
redefine to use “shape” and “size[]” variables instead?

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

40

NXbeam

Definition of the state of the neutron or X-ray beam at any location. It will be referenced by beamline
component groups within the NXinstrument group or by the NXsample group. Note that variables such
as the incident energy could be scalar values or arrays. This group is especially valuable in storing the
results of instrument simulations in which it is useful to specify the beam profile, time distribution etc.
at each beamline component. Otherwise, its most likely use is in the NXsample group in which it
defines the results of the neutron scattering by the sample, e.g., energy transfer, polarizations.

RE Name Attribute Type Value Description
 NXbeam

0/1 incident NXposition Beam direction on
entering beamline
component

beam along (0,0,+z)
in local axes

0/1 final NXposition Beam direction on
leaving beamline
component

0/1 incident_shape NX_CHAR “elliptical” |
“rectangular”

Shape of incident
beam cross-section

0/1 incident_size NX_FLOAT32[2] dimensions of
incident beam

meaning depends on
shape

0/1 Incident_energy NX_FLOAT32[:] Energy on entering
beamline component

0/1 Final_energy NX_FLOAT32[:] Energy on leaving
beamline component

0/1 Energy_transfer NX_FLOAT32[:] Energy change caused
by component

0/1 Incident_wavelength NX_FLOAT32[:]

0/1 Final_wavelength NX_FLOAT32[:]

0/1 Incident_polarisation NX_FLOAT32[i,3]

0/1 Final_polarisation NX_FLOAT32[i,3]

0/1 Flux NX_FLOAT32[i] Flux incident on
beam plane area

Flux incident on
beam plane area

0/1 Spectrum NXdata Distribution of beam
with respect to
relevant variable e.g.
wavelength

Distribution of beam
with respect to
relevant variable e.g.
wavelength

0/1 divergence_x NX_FLOAT32

0/1 divergence_y NX_FLOAT32

The path of the beam is described by an NXposition object for consistency with other components. The
NXdistance member of NXposition gives a reference point through which the beam passes; the beam
travel down its local z axes, which is rotated from the global coordinate system in a way specified by
the NXorientation member.

Differences from Current NeXus Standard
incident, final, incident_shape, incident_size are new; however do we need incident_* and final_*?
Should an NXbeam not just describe the state of the beam at a given position?

Notes
We may need to allow the SCANNED attribute as this could be referred to from movable components

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

41

NXbeam_stop

RE Name Attribute Type Value Description
 NXbeam_stop

1 description NX_CHAR

1 Position NXposition Distance and orientation

1 Shape NX_CHAR circular | square

1 Type

1 Width

1 Height

1 Diameter

1 thickness

1 material

1 In_use NX_BOOLEAN

Differences from Current NeXus Standard
new class

Notes
Should recode to use “shape” and “size” variables

NXcrystal

Crystal monochromator or analyser

RE Name Attribute Type Value Description
 NXcrystal

1 Position Nxposition Location of crystal Location of crystal

1 Wavelength NX_FLOAT32 Optimum diffracted
wavelength

Optimum diffracted
wavelength

1 Units NX_CHAR Angstrom

1 Energy NX_FLOAT32 Optimum diffracted
energy

Optimum diffracted
energy

1 Units NX_CHAR MeV

1 Lattice_parameter NX_FLOAT32 Lattice parameter of
the nominal
reflection

Lattice parameter of
the nominal
reflection

1 Units NX_CHAR Angstrom

0/1 lattice_parameter_error NX_FLOAT32

1 Reflection NX_INT32[3] [hkl] for nominal
reflection

[hkl] for nominal
reflection

1 Horizontal_curvature NX_FLOAT32 Horizontal curvature
of focusing crystal

Horizontal curvature
of focusing crystal

1 Units NX_CHAR Degree

1 Vertical_curvature NX_FLOAT32 Vertical curvature of
focusing crystal

Vertical curvature of
focusing crystal

1 Units NX_CHAR Degree

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

42

1 Horizontal_aperture NX_FLOAT32 Horizontal aperture,
if rectangular

Horizontal aperture,
if rectangular

1 Units Cm

1 Vertical_aperture NX_FLOAT32 Vertical aperture, if
rectangular

Vertical aperture, if
rectangular

1 Units NX_CHAR cm

0/1 mosaic_spread NX_FLOAT32[3]

0/1 temperature_log NXlog

0/1 shape NX_CHAR

0/1 size NX_FLOAT32[3]

0/1 description NX_CHAR

0/1 cut_angle NX_FLOAT32

Differences from Current NeXus Standard

Notes
need expert input

Should also allow for periods and SCANNED

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

43

NXguide

Definition of a beamline guide -

RE Name Attribute Type Value Description
 NXguide

1 position NXposition

1 length NX_FLOAT32

1 entrance_size NX_FLOAT32[2] x,y

1 exit_size NX_FLOAT32[2] x,y

1 type NX_CHAR

1 details

1 mode

1 incident_angle

1 reflectivity NXdata Reflectivity as function
of wavelength [nsurf,i]

1 horizontal_bend_angle NX_FLOAT32

1 vertical_bend_angle NX_FLOAT32

1 interior_atmosphere NX_CHAR “vacuum” inside guide

1 external_material NX_CHAR outside
substrate

1 m_value NX_FLOAT32[nsurf]

1 substrate_material NX_FLOAT32[nsurf]

1 substrate_thickness NX_FLOAT32[nsurf]

1 coating_material NX_FLOAT32[nsurf]

1 substrate_roughness NX_FLOAT32[nsurf]

1 coating_roughness NX_FLOAT32[nsurf]

1 coating_material NX_FLOAT32[nsurf]

1 number_sections NX_INT32 number of substrate
sections

What should be the convention of which order the surfaces are stored ?
[top, bottom, left, right] ?

Do we need to include the entrance/exit windows ?

Differences from Current NeXus Standard
This is a new more general class, encompassing the old NXmirror

Notes
needs expert input

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

44

NXpolarizer
Definition of a beamline spin polarizer

RE Name Attribute Type Value Description
 NXpolarizer

1 Position NXposition

1 Type mirror | He3

1 Details

1 Mode

1 Incident_energy

1 M_value

1 Reflectivity NX_FLOAT32[i] Reflectivity as function of
wavelength

1 Efficiency NX_FLOAT32[i] Efficiency as function of wavelength

1 Polarisation NX_FLOAT32[i] Polarisation as function of
wavelength

1 Relaxation_time

1 Path_length

Differences from Current NeXus Standard
all new

Notes
need expert input – can we merge with NXflipper?

NXflipper

Definition of a beamline spin flipper

RE Name Attribute Type Value Description
 NXflipper

1 type

1 Position NXposition

1 Length NX_FLOAT32

1 Efficiency NX_FLOAT32[i] Efficiency as function of wavelength

1 State NXlog

Differences from Current NeXus Standard
all new

Notes
need expert input – can we merge with NXpolarizer?

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

45

Utility Classes

NXdistance
A class to specify the location of a component in either the global coordinate system (“absolute”), or in
the coordinate system of another component (“relative”) For absolute positioning we use the MCSTAS
convention of:

• Z axis points down the beam
• X axis is perpendicular to the beam in the horizontal plane, pointing left as seen from the

source
• Y axis points upwards perpendicular to the beam in the vertical plane

The origin of absolute coordinates is taken at the scattering centre, which will be at (or near) the sample
position.

RE Name Attribute Type Value Description
 NXdistance

0/1 Absolute NX_BOOLEAN Absolute=true,
relative=false

If relative, need to follow
link in the distance member

1 Type NX_CHAR cartesian | cylindrical
| spherical

0/1 Distance NXdistance Link to other object if
we are “relative”,
else absent

1 Value NX_FLOAT32[np,3] (X,y,z), (r,theta,z) or
(r,theta,phi).

We must use metres and
degrees as there are no units
attributes due to possible
mixture of data types

0/1 scanned NX_BOOLEAN 0 | 1

Differences from Current NeXus Standard
New class

NXorientation
A class to specify the orientation of the local component’s (x,y,z) axes either absolutely (using the
global coordinate frame) or relative to another component’s axes. There are many choices for the three
(euler) angles required to specify this [14] as well as other schemes such as direction cosines.

RE Name Attribute Type Value Description
 NXorientation

0/1 Absolute NX_BOOLEAN Absolute=1, relative=0 If relative, need to
follow link in the
orientation member

1 Type NX_CHAR “euler_zyx” Convention for angles /
information

0/1 Orientation NXorientation Link to another object
if we are relative, else
absent

1 Value NX_FLOAT32[np,3] The orientation
information

would need to be [np,9]
if we allow direction
cosines

1 Units NX_CHAR Degree | dimensionless dimensionless if
“cosine”

0/1 Scanned NX_BOOLEAN 0 | 1

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

46

Differences from Current NeXus Standard
New class

Notes

NXposition
A class to specify the position (location + orientation) of a component either absolutely or relative to
another component. We need to split “position” into “distance” and “orientation” classes to allow
linking of the members (linked members must have the same name)

RE Name Attribute Type Value Description
 NXposition

0/1 scanned NX_BOOLEAN 0 | 1 We vary position with data collection period
number if this is TRUE

0/1 is_origin NX_BOOLEAN 0 | 1 Indicates that we are an origin rather than
attached to an instrument component

1 distance NXdistance

0/1 orientation NXorientation No rotation if absent

0/1 description NX_CHAR Description of position; normally only used if
this is an origin

Differences from Current NeXus Standard
New class

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

47

NXnote
This is a convenience class for storing additional information that might be attached to another class in
a NeXus file. To store a collection of notes, see NXnotebook. The original idea was borrowed from
Cooper et al [4] – our extension is to add the “Mime content-type” entry, so a program can then use any
built-in file associations on the reading computer to invoke the correct external display program for an
image, video, audio etc.

RE Name Attribute Type Description Description
 NXnote

0/1 Author NX_CHAR Author of note

0/1 Date ISO8601 Date note created/added

1 Type NX_CHAR Mime content-type of
note data field

e.g. text/plain, image/jpeg etc

0/1 File_name NX_CHAR Name of original file
name

Present if note was read from an
external source

0/1 Description NX_CHAR Title of an image or other
details of the note

1 Data NX_BINARY Binary note data. If this is text, the line terminator
should be \r\n as in NX_TEXT

Differences from Current NeXus Standard
New class

Notes

NXnotebook
A class for storing a collection of notes; purely text notes could be stored as NX_TEXT instead

RE Name Attribute Type Value Description
 NXnotebook

1 count NX_INT32 Number of notes

1+ {Note1} NXnote note data

Differences from Current NeXus Standard
New class

Notes
Labelling notes note1, note2 etc eases in later access and sequencing

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

48

Acknowledgements
I would like to thank all members of the ISIS NeXus Working group [2] for their help and input during
the drafting of this document. In particular, Toby Perring for doing the initial groundwork, Steve King
for helping formulate the NXsample class and Richard Heenan for suggestions on handling array
detectors.

ISIS NeXus Raw Data File
03/09/2003

Version 0.16 (DRAFT)

49

References

1. The NeXus web site, http://www.neutron.anl.gov/NeXus/
2. The ISIS NeXus Working Group (INWG) – F. A. Akeroyd, M. J. Bull, S. I. Campbell, S. P.

Cottrell, M. R. Daymond, D. W. Flannery, M. Gutmann, W. S. Howells, S. M. King, K. J.
Knowles, C. M. Moreton-Smith and T. G. Perring (isis_nexus@isise.rl.ac.uk)

3. The NeXus definitions and discussion SWIKI, http://www.neutron.anl.gov:8080/NeXus/
4. “NeXus file specification issues” Gary Cooper, Tom Kozlowski, Thomas Proffen (Los

Alamos Neutron Scattering Centre, May 2002)
http://strider.lansce.lanl.gov/canps/nexus/nexus_spec_xml_1.pdf

5. “The sasCIF dictionary”, http://www.embl-hamburg.de/ExternalInfo/Research/Sax/sascif.html
6. The IUCR CIF data format (http://www.iucr.org/cif/)
7. “The Application of the NeXus data format to ISIS Muon Data”, D. Flannery, S. P. Cottrell

and P. J. C. King (RAL-TR-2001-029)
8. NeXus standards committee http://www.neutron.anl.gov/nexus/NeXus_advisers.html
9. The NeXus XML Meta-DTD Format for specifying class definitions,

http://www.neutron.anl.gov/NeXus/NeXus_metaformat.html
10. The HDF file format from NCSA, http://hdf.ncsa.uiuc.edu/
11. The Unidata UDUNITS package, http://www.unidata.ucar.edu/packages/udunits/ (the units

definitions file is at http://www.unidata.ucar.edu/packages/udunits/udunits.dat)
12. ISO 8661 time specification format http://www.cl.cam.ac.uk/~mgk25/iso-time.html and

http://www.w3.org/TR/NOTE-datetime
13. W R Busing & H A Levy, Acta Cryst, (1967), 22, 457-464.
14. H. Goldstein, “Classical Mechanics” (Addison-Wesley)

