

Object Oriented NeXus Classes

Mark Könnecke

Laboratory for Development and Methods

Paul Scherrer Institut

- The plane perpendicular to the main rotation axis of the sample table de£nes the scattering plane of the instrument.
- As components are commonly positioned using angles, a polar coordinate system is used.
- When distances are required then we assume that the sample is a zero. Distances towards the source are negative, distances behind the sample, towards the detector are positive.

Polar Angle, Distance and Rotation

- The angle between the extension of the direct beam between a given component and its previous component and the projection of a third component onto the scattering plane is the polar_angle. This corresponds to longitude in a a geographical coordinate system. In scattering this is synonymous with two theta or gamma in normal beam geometry.
- Birds eye view on scattering plane:

Standing besides the instrument:

Elevation corresponds to latitude in geography. In neutron scattering this is often the angle nu.

Again birds eye view onto the scattering plane

Miscellaneous Classes

NXreflection
+h:NX_FLOAT32:[1n]
+k:NX_FLOAT32:[1n]
+l:NX_FLOAT32:[1n]

NXmirrormaterial +substrate_material:String +substrate_thickness:NX_FLOAT32 +substrate_roughness:NX_FLOAT32 +coating_material:String +coating_thickness:NX_FLOAT32 +coating_roughness:NX_FLOAT32 +m_value:NX_FLOAT32

NXspectrum +wavelength:NX_FLOAT32:[1..n] +intensity:NX_FLOAT32:[1..n]

NXlog
+starttime:NXtime
+offset:NX_INT32:[1n]
+value:NX_FLOAT32:[1n]

NXuser
+name:String
+affiliation:String
+address:String
+e-mail:String

NXarchive	
+user:NXuser	
+instrument_reponsible:NXuse	er
+sample:String	
+proposal_id: String	
+experiment_stardate:NXtime	
+title: String	

NeXus Stages

Source Components

Passive Beam Line Components

Active Beam Line Components

More Beamline Components

Samples

NXsample_description
+name:String +chemical_formula:String:[01] +origin:String:[01]

NXenvironment

+name:String +value:NX_FLOAT32 +log:NXlog:[0..1] +mean_value:NX_FLOAT32:[0..1] +standard_deviation:NX_FLOAT32:[0..1]

Detectors

- Concerning data handling there are the following types of detectors:
 - single detectors
 - linear detectors
 - area detectors
 - ID detectors
- Detectors have different geometries:
 - Detectors can have regular shapes: rectangles, lines etc which are best described as such
 - Some detectors (especially @ ISIS) are highly irregular: Then we need to describe each pixel.
- For each detector pixel we need to be able to deduce:
 - The scattering angle towards the previous component
 - The elevation out of the scattering plane
 - The distance to the provinue component

Non-TOF Detectors

TOF-Detectors

More Detectors

Monochromatic Instruments

TOF Instruments

- The current NeXus classes are messy due to lack of specialization
- More classes improve clarity
- Inheritance brings better maintainability: for instance adding NXellipitcal as a NXshape does not require changes downstream
- Caveats:
 - backwards compatability dif£cult
 - description in XML problematic