
ENNI/94/P7

Proposal for a European Neutron
Scattering Data Exchange Format

Dr. Mark Könnecke
Rutherford Appleton Laboratory

ISIS-Facility
Building R3, Room 1.38

Chilton, Didcot
Oxon OX11 0QX
United Kingdom

Abstract
In this paper several scientific dataformats: HDF, netCDF, CDF, FITS and
STEP/Express will be reviewed in order to determine their usability as a com-
mon european dataformat for neutron scattering data. netCDF is propsed as
a physical file format for neutron scattering. A list of possible keywords in a
common european dataformat file is given. This should be understood as a
draft.

Version 4.2: 17.6.1994
ENNI/94/P7

i

Contents

ii

Chapter 1

ENDCDF

At a European workshop on data visualisation at Cosener’s House, Abingdon on
the 26.11.1993 it was agreed that a decision on a common visualisation package
for neutron scattering is not feasible for several reasons.

• Nobody can forecast the development of the visualisation software market.
Companies may disappear in the current recession. Several public domain
visualisation packages are currently under development.

• A visualisation package is a major investment in software and training. If
a package is already present at a site nobody will be willing to change to
another package just for evaluating neutron scattering experiments.

However, it would be a great help if all the visualisation packages would be
able to access rawdata in some common format. So the idea for a European
Neutron Scattering Dataformat (ENDCDF) was born. Additionally a common
exchange format would facilitate software reuse through the neutron scattering
community. The first step towards such a format is the evaluation of scientific
dataformats already available. A report on such dataformats is presented here.

1.1 Requirements for a common neutron diffrac-
tion dataformat

In order to have a measure against which the dataformats in question could be
compared, some requirements for a ENDCDF will be stated.

1

• ENDCDF must be network transparent and readable across a wide range
of hardware platforms, from the IBM–PC to a Cray.

• it should be readable from a large variety of visualisation packages.

• a library of data access functions callable from FORTRAN and C, C++
should be available in order to speed up application development and to
enforce standardization.

• with the advent of area detectors ENDCDF should allow for the efficient
storage and retrieval of large amounts of data.

• a built–in means of effective data compression would be appreciated, as
some of the neutron diffraction datasets are very large.

• the chosen dataformat should be flexible enough to store data of any kind,
such as measurement parameters, data themselves, text data describing
the sample or pointing to sources of related information.

1.2 Comparison of scientific dataformats

A survey of currently available scientific dataformats was performed in order to
find a format which fulfills the requirements of the neutron scattering commu-
nity. Scientific dataformats included in this comparison were ASCII, netCDF,
CDF, FITS, CIF and STEP/Express. ASCII is the simple ASCII file as used
by ILL. The result of the comparison of scientific dataformats is represented
in table ??. From the comparison of scientific dataformats, I propose that we
should adopt netCDF. It fulfills most requirements except compression. But
compression can be achieved by compressing data separately and storing the
result as byte–array. The strongest argument in favour of netCDF is its sup-
port for extracting subsets of data and the mathematical tools already available.
Moreover it will be included in HDF, which appears to develop in direction of
a public domain multimedia standard. A more detailed description of all these
formats is given in chapter ??. NetCDF will be described in the next section.

1.3 Properties of netCDF

NetCDF stands for Network Common Data Format. NetCDF has been devel-
oped by Unidata, a software support group of UCAR (University Corporation
for Atmospheric Research). NetCDF is a data format entirely devoted to stor-
ing scientific data. NetCDF can store multidimensional arrays of various integer

2

Table 1.1: Comparison of scientific dataformats
name HW LIB VIS Speed COM Flex
ASCII X X
netCDF X X X X X
HDF X X X X X
FITS few X
CIF X
STEP X X
Legend:

HW support for all important HW-platforms
LIB availability of PD–access library
VIS supported by visualisation packages
COM built in compression
Flex fexibility

and floating point types, together with some information to describe the data
and their dimensions. New or additional data can be added to netCDF files at
any time. NetCDF is self describing. For the actual storage of data netCDF uses
the XDR–library for hardware independent binary representation of numerical
values. This makes netCDF files portable to different hardware platforms via
networks. All important hardware platforms used in the scientific community
are supported. A public domain library of access functions both for FORTRAN
and C is available. A highlight of this library is the support for reading and
writing subsets of otherwise larger multidimensional arrays. A means of data
compression was omitted from netCDF in order to allow for the previously men-
tioned subset access to data. For netCDF a whole variety of software tools is
available or will become available soon:

• netCDF supports a tiny data definition language called CDL. Tools are
available to translate CDL files into netCDF files or in C or FORTRAN
source code templates to write the specified netCDF files.

• a tool for dumping a binary netCDF file into its CDL (ASCII) equivalent
is supplied with the library.

• a utility for editing netCDF files and performing mathematical calcula-
tions on stored values is available. This tool supports a C alike program-
ming syntax.

• a HDF interface is in early stages of usability.

Furthermore netCDF is supported by a large variety of public domain and
commercial data visualisation and manipulation packages. Several organisa-

3

tions have adopted netCDF as their standard data format. You can obtain the
netCDF software package and all detailed information you need via ftp from:

host: ftp.unidata.ucar.edu
directory: pub/netcdf

The netCDF software was tested at ISIS on a VMS, a Open–VMS and a
Ultrix platform in a larger programming project. No bigger problems were
encountered in building the netCDF– libraries and the accompanying tools on
VMS and Ultrix. Building the Open–VMS version actualy involved porting the
netCDF library. After the exchange of a few e–mail messages with UCAR all
problems encountered were solved. No bugs were found in the library (However,
I will not state that there are none!). The documentation provided by UCAR
is thorough and good.

The interchangebality of netCDF was tested between the platforms used.
The test was positive. There is, however, a problem with ftp transfer to and
from VMS. This problem is due to Digital’s implementation of the ftp server and
is no fault of netCDF. This problem can be solved by taking special precautions
during transfer and/or with a special command to change filetype, which exists
in VMS version 6 upwards.

1.4 General considerations for an exchange for-
mat

As netCDF is expandable, we only need to define minimum data structures,
which must be included for a ENDCDF. Anybody may add what he likes without
interfering with older data already stored in the file. This minimum should
contain:

• the data themselves including dimensions and axis definitions.

• eventually a detector mask when position sensitive detectors are used.

• the experimental information necessary to do computations on the data (
wavelength, flight path length etc.).

• sample environment: pressure, temperature, time

• a pointer to a description of the experiment.

• a pointer to a description of the sample.

• a pointer to the description of the instrument.

4

Recommended additions to such a file might be pointers to associated publica-
tions and results of non trivial calculations performed with the data.

Hard disks get cheaper any day. As consequence there is no need to com-
press data while calculations are done with them. But for archiving or network
transport compression is an important issue. Two topics need to be discussed
concerning compression:

• Compression at which stage

• type of compression

Concerning the first question we have the choice to compress the data in the
file. This would make the communication of special reading-/ writing-routines
together with the data necessary. Or we compress the exchange file. I vote for
the second, more general, option.

There are two types of data compression: lossless and lossy compression.
Lossy compression achieves the higher compression ratios, but you might loose
a bit or two during compression and decompression. This is certainly not ac-
ceptable in the neutron scattering community. Lossless compression techniques
do not have this drawback, but achieve generally lesser compression ratios than
lossy compression.

A state of the art lossless compression algorithm is the Lempel–Ziv–Welch
algorithm. Fortunately the public domain Gnuzip utility, available for all im-
portant HW–platforms, implements this algorithm. So, I recommend the use of
this program as a means for compressing exchange files, if necessary.

One important issue in a discussion of an exchange format is the abstraction
level on which the data should be transported. Should all raw data, background
measurements and instrument settings be stored or should preprocessed data be
stored? The first option would imply the distribution of all instrument specific
software to users. This contradicts one main objective of a common exchange
format: to facilitate software reuse. But clearly software written to evaluate
powder diffraction data cannot be used to evaluate inelastic TOF–data. The
conclusion is, that ENDCDF should provide an abstraction for each of the major
types of instruments used.

So, the actual rawdata (motor positions, uncorrected counts etc.) would be
stored on site. Some intrument specific preprocessing would be done on site and
the result would be stored in the exchange format, for the user to take home.
Anybody is free to store her or his motor positions etc. in such a file but this
information is beyond the scope of an exchange format. The preprocessing step
should contain no physical interpretation, just the conversion from hardware

5

data to physical data and straightforward corrections such as normalisations
against the incoming beam and background subtracion.

In order to enforce standardization it is necessary to define which values
should be stored in a ENDEF–file. Furthermore the data stored may be more
complete, if there exist guidelines.

Let us summarize the more political guidelines in the discussion of an euro-
pean neutron scattering data exchange format:

• netCDF as underlying file format.

• compression of the netCDF–file rather than compression of the data stored
in the file in order to avoid the need for specific software.

• abstraction of the raw data on instrument level. No motor counts!

• definition of a set of keywords for data to be stored.

1.5 Proposal for a set of neutron diffraction re-
lated data to be included in a ENDCDF-file

A problem is the multitude of different neutron scattering experiments which
need to be handled. Information on an experiment come from four different
sources:

• Administrative information (Who, Where, Why, When).

• Sample information.

• Instrument Hardware.

• Actual Data measured.

In order to get a clearer understanding of the instrument and sample informa-
tion lets look at the pass of a poor neutron through the most general neutron
scattering instrument (Figure ??).

Coming from the source the neutron passes 0–1 monochromators. Monochro-
mators come in three flavours: Crystals, Choppers and velocity selectors. Next
to the monochromator and in principle anywhere in the instrument might be
a filter. Common filters are Soller slits and pinholes. After flying the primary
flightpath the neutron reaches the sample. Samples come in two flavours, too:

6

Source

0 - 1 Monochromator

Sample

0 - n Analyzer

0 - n Detectors

?

?

?

?

Chopper

Crystal

Powder

Single Crystal

Chopper

Crystal

Single Detector

Area Detector

�
��
�*

Q
Q
QQs

��
��1

PPPPq

��
��*

PPPq

��
��1

PPPq

Filter
Soller

Pinhole

��
��1

-
HHHHj

Velocity selector

�
�
�
��

?

Figure 1.1: The path of a neutron through a scattering instrument

7

Table 1.2: Instrument parameter to be stored for different instruments
Instrument Mono Distances Analyzer Detector
4–circle X
mono Powder X
Triple–axis X X X
TOF X X X
Laue–pulsed X X
inelasic–indirect X X X
TOF–Powder X

Single Crystals and Powders. For the purpose of this paper lets consider all
liquid, gaseous, glass or metal plate samples as some kind of powder. Fur-
thermore, a single crystal can be oriented differently in respect to the incident
neutron beam. According to common usage, this information will be stored to-
gether with the counts in the detector. At the sample the neutron is diffracted
in one way or another. Next it might hit one of 0–n analyzers. Analyzers are
in principle monochromators and come in the same two flavours as those. The
neutron eventualy moves on at the secondary flightpath and reaches an detector
in order to be counted. Detectors can be very different, too. There are single
detectors, area detectors and both of these might have energy resolution, i.e. a
time dimension. Furthermore the neutron needs to know where the detector is
situated relative to the sample in order to get counted.

Clearly not all these details need to be stored for any type of experiment.
Ther should be a section in the file, where the instrument is described in terms
of the building units given above. For inelastic and TOF experiments all the
distances between components are important in order to calculate the resolution
function. Table ?? might help you to determine which data is necessary for
your specific experiment. Sample data is not included in that table, because it
is common for all experiments to act on a sample.

Another issue is the units, in which data should be stored. As people are very
reluctant to adopt standard units, it is not reasonable to prescribe units for each
variable. But everybody must state the units, she or he uses, as an attribute
of the variable. And there should exist a recommendation for the units to use.
Clearly this recommendation can be nothing else than the standard SI–units.

After this more general part, we will now take a closer look first on the
administrative bit and than on the neutrons flightpath through the instrument
and the parameters it encounters.

8

1.5.1 General Information

The following general information should be incorporated in any ENDCDF-file:

run number a name for this file.

Owner Name of the owner of the file, complete with address.

Site the name of the site where the data were measured.

Date Date of the measurement.

ExperimentDescription a reference to some available paper which gives de-
tails of the experiment.

AditionalData1-n references to 1 – n aditional datasets such as background,
calibration runs etc., which are necessary to evaluate the data.

History[NHistoryItems] What has happened with the data.

1.5.2 Instrument Data

To start with, we need some indication, what will await us:

Instrument name of the instrument on which the data were measured.

InstrumentDescription a reference to a publication, which describes the cru-
cial parameters of the instrument which was used for the experiment.

LocalContact Name and adress of the local contact person responsible for the
measurement at the site.

TOF Flag yes if TOF–instrument, no else.

BuildingBlocks a text value describing the instrument in terms of the build-
ing blocks given above. The blocks come in a comma separated list. For
example: ”Monochromator, Filter1, Distance1, Sample, Distance2, De-
tector”. If more than one item (Filter, Distance) occurs it should get a
number appended. Number should start with 1 close to the source. The
distances describe the distances between the items they separate. If a
distance before the monochromator is given, it will describe the distance
between the source and the following item.

9

Monochromators

Monochromators can either be crystals or choppers. So, the first thing to store
is the type of monochromator present.

• Monochromator. This should be a text value with the permissible values
of NONE, CRYSTAL, CHOPPER or VELSEL for a velocity selector.

Some people need the wavelength distribution in order to get their caculationd
on the experiment done properly. This should be given as:

• NWaveSteps number of steps in the wavlength profile.

• WaveStart start wavelength of the wavelength profile.

• WaveStep stepsize of the wavelength profile.

• WaveProf(NWaveSteps) the intensity for each wavelength.

In some cases you might want to give more detail concerning monochromators
or choppers. In the case of a crystal the apropriate values might be:

• MCrystal: text to describe crystal type and reflection used.

• MMosaicSpread: a value describing the spread of the crystal.

In the case of a chopper or velocity selector.

• MChopperType: text to describe chopper.

• MChopperSpeed in revolutions per second.

• MChopperPhase in degrees.

Filters

For all filter you need to give:

• FilterType, can be SOLLER or PINHOLE.

A Soller filter is described by:

10

• SollerLength in meter.

• SolleHeight in meter.

• SollerWidth in meter.

A pinhole filter is described by:

• PinLength: length of the pinhole.

• StartDiameter: diameter at the start of the pinhole in mm.

• EndDiameter: diameter at the end of the pinhole in mm.

All value names should get a number appended according to a number in the
building block description in order to make names unique and distinguishable.

Distances

For all TOF–experiments and some inelastic experiments you need to store the
distances. Distances before the sample are in general single. For detectors or
analyzers, however, the distances may be arrays, as there might be more than
one of these items. So you have two replace dimension in the following by the
apropriate dimension for example: NumberOfAnalyzers or NumberOfDetectors.

• Distance1. Distance1 from the building block description.

• Distance2(dimension). Distance2 from the building block description.

• Distance3(dimension). Distance3 from the building block description.

•

All distances should be given in meter.

Sample data

For all samples the following information needs to be included:

PhaseName Chemical compound name and polymorph measured.

SampleDescription a more detailed description of the samples synthesis

11

temperature measurement temperature in Kelvin.

Pressure experiment pressure in bar.

SpecialEnvironment information on special conditions of the experiment, if
any.

Cell(6): Cell constants a, b, c, α, β, γ in nanometer and degrees.

Absorption: absorption coefficient.

Samples come in two common flavours: single crystals and powders. For single
crystals we need to include:

UB(3,3): Crystal orientation matrix.

nShape: number of parameters describing the crystals shape.

Shape(4,nShape): H, K, L, distance(mm) values to describe the crystals shape.
0,0,0, distance should be used to describe a spherical crystal.

For powders:

SampleGeometry: may be plate or cylinder.

Analyzers and Detectors

In a lot of cases the position of detectors or analyzers is valuable to know. In
order to describe these positions we need to define a coordinate system. It will
be a spherical one with the sample at the center. Gamma will measure values in
the horizontal plane which includes the sample and the primary beam. In many
cases this corresponds to two Theta. Zeta will describe angles in the vertical
plane, perpendicular to the Gamma–plane. Zetas zeropoint is the horizontal
plane. For area detectors Gamma and Zeta will point on the center of the
detector. So for all all cases where the position of analyzers or detectors is vital
to understand the data you need to give the following values:

• DGamma,AGamma(NumberOfDetectors or NumberOfAnalyzers) in de-
grees.

• DZeta,AZheta(NumberOfDetectors or NumberOfAnalyzers) in degrees.

12

D is the suffix for detetcor, A for analyzer.

Analyzers
Analyzers are quite similar to Monochromators. So the data to store are too
quite similar.

• Analyzer. This should be a text value with the permissible values of
NONE, CRYSTAL or CHOPPER.

• NumberOfAnalyzers. You need to know if there are more than one.

In some cases you might want to give more detail concerning analyzers. In the
case of a crystal the apropriate values might be:

• ACrystal(NumberOfAnalyzers): text to describe crystal type and reflec-
tion used.

• AMosaicSpread(NumberOfAnalyzers): a value describing the spread of
the crystal.

In the case of a chopper:

• AChopperType(NumberOfAnalyzers): text to describe chopper.

• AChopperSpeed(NumberOfAnalyzers) in revolutions per second.

• AChopperPhase(NumberOfAnalyzers) in degrees.

Detectors
Neutrons are expensive. In order to get the most from them people tend to
install area sensitive detectors on their instruments. In order to understand the
data gathered in them, you need to describe the geometry of these detectors.
So you need to store:

• NumberOfDetectors

• DetectorType some text to describe the detector

• detector width(NumberOfDetectors) physical size of detector in meters.

• detector height(NumberOfDetectors) physical size of detector in meters.

• number x(NumberOfDetectors) number of detector pixels in x direction.

• number y(NumberOfDetectors) number of detector pixels in y direction.

13

• number t(NumberOfDetectors) number of detector pixels in time direction
for TOF–detectors.

• Name(NumberOfDetectors) variable name under which the detector array
is stored in the data section.

• detector efficiency(NumberOfDetectors) gives the relative efficiency of the
detectors if you use different detctors on the same instrument.

1.5.3 Data

Let us start with a Definition:

Definition: Data are the normalised counts in the detectors and the instrument
settings varied through the experiment.

So, everything that is hard coded into the instrument or will not be varied
througout the experiment should be put in the instrument section, if you need
to know it. Such things as H, K, L or Chi, Phi, Omega which will be varied in the
experiment will be stored with the counts. This is dictated by common usage.
Of course, different instruments need to store different data. Look for your type
of instrument in the instrument hierarchy given in figure ?? and include all data
items you find from the root to you specific case.

Let us now discuss the data in the hierarchy in more detail:

The first distinction to be made is between data gathered with a monochrom-
atized beam or of those gathered with a white beam. In the case of a monochro-
matized incident beam we have to store the

• Wavelength in nanometer.

Now, with a monochromatized beam we can choose to make inelastic or
elastic experiments. Elastic does not imply more data, but with inelastic data
you will want to state the Q–vector scanned:

• Chi, Phi, Lambda

• H, K, L

For a triple–axis machine you need:

14

��������������)

�
�
�

�
�
��	

@
@
@
@
@R

�
�
���

Z
Z
ZZ~ ?

��
���

���
����

Z
Z
Z
ZZ~

�
�
�

�
�
��=

B
B
B
BN

�
�
�
�
��

HH
HHH

HHHj

Data

white beam

single crystal Powder

Laue-Diff indirect-inelastic monochromatic beam

elastic inelastic

Powder 4–circle Triple–axis TOF–spectrometer

Figure 1.2: Data hierarchy for neutron scattering experiments

15

• NumberOfQValues

• Qx(NumberOfQValues)

• Qy(NumberOfQValues)

• Qz(NumberOfQValues)

• Energy(NumberOfQValues)

• QIntensity(NumberOfQValues)

For a TOF–machine, you need:

• The normalised counts in a array, named according to the name defined in
the instrument section and with the dimensions in x, y and time, defined
there.

• TimeMapping(NumberOfTimeChannels, NumberOfDetectors) maps time
indices in the above array to time values in microseconds.

Lets get back to the elastic branch. Consider a four–circle diffractometer
first. Most people will be content with integrated intensities, some will want to
have the reflection profiles measured. So there are two formats:

• NumberOfReflections

• Data(9,NumberOfRelections) Number of reflection, Chi, Phi, Omega, H,
K, L, FHKL, Sigma.

The second format:

• NumberOfProfiles

• ProfileLength maximum length of profiles measured.

• Reflections(NumberOfProfiles, ProfileLength) All the counts.

For all four circle data you need:

• ScanType either Omega or Omega–Two Theta.

Powder people always want a profile:

16

• StartTwoTheta

• TwoThetaIncrement

• ProfileLength

• Counts(ProfileLength)

Now let us switch to the white beam part of the hierarchy. A distinction
between single crystals and powder expreiments can be made: For single crystals
you need to store:

• Chi, Phi, Lambda

in order to get the crystals orientation.

For an indirect geometry instrument you need to include:

• Analyzer Anergy in meV.

For both single crystal instruments types in this branch you need addition-
ally:

• The normalised counts in a array, named according to the name defined in
the instrument section and with the dimensions in x, y and time, defined
there.

• TimeMapping(NumberOfTimeChannels, NumberOfDetectors) maps time
indices in the above array to time values in microseconds.

TOF–flight powder machines are simpler. You include:

• ProfileLength

• Counts(ProfileLength)

• TimeMapping(ProfileLength) a array which maps indices in the Counts
array to time values in microseconds.

1.6 Examples

Two example CDL files for ENDCDF will be given. CDl is the data descrp-
tion language of netCDF and its ASCII representation. From these files C- or
Fortran77 code can be generated to write a netCDF file.

17

Please note, that netCDF requires data to be organised in three sections: in
a section called dimension everything is declared, which is used as a dimension.
In the section variables all variables are declared, not unlikely a variable decla-
ration in Pascal or C. Items starting with a : are global attributes, something
like variable:Units is a attribute belonging to that variable. Attributes are ex-
planatory data to data. In the data section, finally, all the declared variables
can be assigned values. Everything after // to the end of a line is comment.
There are two examples: One for a simple powder diffractometer and the other
one for the SXd diffractometer at ISIS.

netcdf puder {
// example of CDL-notation for a Powder diffractometer

dimensions:
ProfileLength = 3; // length of measured profile
Help2 =6;

variables: // and attributes

// general

:run_number = "007";
:Owner = "Harry Hirsch, Waldweg 15, 64532 Dambach";
:Site = "Sacclay";
:Date = "26/4/1994";
:ExperimentDescription =
" J. Stink (4), 1993, p32-78";
:AdditionalData = "sister compound: 008";

// Instrument

:Instrument = "Powder 5";
:InstrumentDescription = " Z. Krist (4), 1992, 45-67";
:LocalContact = "J. Balu ";
:TOF_Flag = "No";
:BuildingBlocks = "Monochromator, Sample, Detector";

// Monochromators
:Monochromator = "Crystal";
:MCrystal = "Ge (110) ";

// Sample

18

:PhaseName = "Aquavit-B";
:SampleDescription =
"Bulletin f. Chemistry (7), 1888, 34-67";
float Temperature;
Temperature:Units = "Kelvin";
float Pressure;
Pressure:Units = "bar";
float Cell(Help2);
Cell:Units = "nm and degrees";
float Absorption;
Absorption:Units = "Rehe";
:SampleGeometry = "Cylinder";

// Detector

:DetectorType = "Powder-PSD";

// Data!

float Wavelength;
Wavelength:Units = "nm";

float StartTwoTheta;
StartTwoTheta:Units = "degree";

float TwoThetaIncrement;
TwoThetaIncrement:Units = "degree";

int Counts(ProfileLength);

data:
// purely invented data

Temperature = 290;
Pressure = 1;
Cell = 2.3, 2.3 , 4.5, 90., 90., 90.;
Absorption = 0.8;

Wavelength = 0.12;
StartTwoTheta = 22.;
TwoThetaIncrement = 0.2;
Counts = 2,2,2;
}

19

netcdf SXD {
// example of CDL-notation for the SXD diffractometer at ISIS

dimensions:
Help1 = 3;
Help2 = 6;
number_x = 64;
number_y = 64;
number_t = 663;

variables: // and attributes

// general

:run_number = "6077";
:Owner = "A. Nobel";
:Site = "ISIS";
:Date = "26/4/1994";
:ExperimentDescription =
" J. Explosives (4), 1993, p32-78";
:AdditionalData = "Vanadium run 6078";

// Instrument

:Instrument = "SXD";
:InstrumentDescription = " Z. Krist (4), 1992, 45-67";
:LocalContact = "C. Wilson ";
:TOF_Flag = "Yes";
:BuildingBlocks = "Distance1, Sample, Distance2, Detector";

// Distance

float Distance1;
Distance1:Units = "meters";
float Distance2;
Distance2:Units = "meters";

// Sample

:PhaseName = "Dynamit-5";

20

:SampleDescription =
"Bulletin f. Chemistry (7), 1866, 54-67";
float Temperature;
Temperature:Units = "Kelvin";
float Pressure;
Pressure:Units = "bar";
float Cell(Help2);
Cell:Units = "nm and degrees";
float UB(Help1, Help1);
float Absorption;
Absorption:Units = "Rehe";

// Detector

:DetectorType = "SXD";
float DGamma;
Gamma:Units = "degree";
float detector_width;
detector_width:Units = "mm";
float detector_height;
detector_height:Units = "mm";
:Name = "RawData";

// Data!

float RawData(number_x, number_y, number_t);
float TimeMap(number_t);
float Chi;
Chi:Units = "degrees";
float Phi;
Phi:Units = "degrees";
float Omega;
Omega:Units = "degrees";

data:
// purely invented data

Distance1 = 10;
Distance2 = 5;
Temperature = 290;
Pressure = 1;
Cell = 2.3, 2.3 , 4.5, 90., 90., 90.;
UB = 0.2, 0.3, 0.4 ,

21

0.8, 0.9, 0.6,
0.2, 0.3, 0.7;

Absorption = 0.8;

DGamma = 90.;
detector_width = 192.;
detector_height = 192.;
Chi = 56;
Phi = 123.444;
Omega = 45.;

// RawData and TimeMap omitted due to typing laziness

}

1.7 How to convert?

The conversion from existing raw dataformats to an exchange format will cost
some programming effort. But the netCDF tools facilitate this process. The
following steps are necessary to do the conversion:

• Define which data from your instrument needs to be incorporated in an
exchange format file. Describe these data in the form of a CDL–file.
Typical CDL–files for the most common neutron scattering instruments
will be provided by ISIS.

• Review the file description with your instruments users. Make your users
happy.

• generate a Fortran77– or ANSI–C–language template program from your
CDL–file. This takes a few seconds.

• You must assign your values to the variables in the generated template
code. So you need to edit this file and add calls to your existing prepro-
cessing or raw data reading routines in order to fill in the variables. Might
be, that you need to write a few routines to convert data.

• Compile your code and link it with the netCDF–library.

Assuming the existance of raw data reading routines this conversion program
will be finished within a day by your star programmer. A student might take

22

longer. As an example, a Fortran77 source code was generated from the CDL–
file for a powder diffractometer given above. This Fortran code (with a few
comments added) can be found in picture below.

Making an application program read the netCDF data is easy, too.

Example Fortran77 code for writing powder diffraction data. Generated
automatically from the CDL–file above.

program fgennc

include ’netcdf.inc’

integer iret

* netCDF id

integer ncid

* dimension ids

integer ProfileLengthdim, Help2dim

* variable ids

integer Temperatureid, Pressureid, Cellid, Absorptionid, Waveleng

1thid, StartTwoThetaid, TwoThetaIncrementid, Countsid

* variable shapes

integer dims(1)

* corners and edge lengths

integer corner(1), edges(1)

* data variables

C !!!!!!!! These variables you will have to fill in! !!!!!!!!!!!!!!

C

real Temperature

real Pressure

real Cell(6)

real Absorption

real Wavelength

real StartTwoTheta

real TwoThetaIncrement

integer Counts(3)

C--

* attribute vectors

* enter define mode

ncid = nccre (’puder’, NCCLOB, iret)

* define dimensions

ProfileLengthdim = ncddef(ncid, ’ProfileLength’, 3, iret)

Help2dim = ncddef(ncid, ’Help2’, 6, iret)

* define variables

Temperatureid = ncvdef (ncid, ’Temperature’, NCFLOAT, 0, 0, iret)

Pressureid = ncvdef (ncid, ’Pressure’, NCFLOAT, 0, 0, iret)

dims(1) = Help2dim

23

Cellid = ncvdef (ncid, ’Cell’, NCFLOAT, 1, dims, iret)

Absorptionid = ncvdef (ncid, ’Absorption’, NCFLOAT, 0, 0, iret)

Wavelengthid = ncvdef (ncid, ’Wavelength’, NCFLOAT, 0, 0, iret)

StartTwoThetaid = ncvdef (ncid, ’StartTwoTheta’, NCFLOAT, 0, 0, ir

1et)

TwoThetaIncrementid = ncvdef (ncid, ’TwoThetaIncrement’, NCFLOAT,

10, 0, iret)

dims(1) = ProfileLengthdim

Countsid = ncvdef (ncid, ’Counts’, NCLONG, 1, dims, iret)

* assign attributes

C!!!

C Here you will have to call you subroutines which read or define such

C parameters as run_number, Owner, Site, Date

C

C The following code will write these attributes to the file

C!!!

call ncaptc(ncid, NCGLOBAL, ’run_number’, NCCHAR, 3, ’007’, iret)

call ncaptc(ncid, NCGLOBAL, ’Owner’, NCCHAR, 39, ’Harry Hirsch, Wa

1ldweg 15, 64532 Dambach’, iret)

call ncaptc(ncid, NCGLOBAL, ’Site’, NCCHAR, 7, ’Sacclay’, iret)

call ncaptc(ncid, NCGLOBAL, ’Date’, NCCHAR, 9, ’26/4/1994’, iret)

call ncaptc(ncid, NCGLOBAL, ’ExperimentDescription’, NCCHAR, 27, ’

1 J. Stink (4), 1993, p32-78’, iret)

call ncaptc(ncid, NCGLOBAL, ’AdditionalData’, NCCHAR, 20, ’sister

1compound: 008’, iret)

call ncaptc(ncid, NCGLOBAL, ’Instrument’, NCCHAR, 8, ’Powder 5’, i

1ret)

call ncaptc(ncid, NCGLOBAL, ’InstrumentDescription’, NCCHAR, 26, ’

1 Z. Krist (4), 1992, 45-67’, iret)

call ncaptc(ncid, NCGLOBAL, ’LocalContact’, NCCHAR, 8, ’J. Balu ’,

1 iret)

call ncaptc(ncid, NCGLOBAL, ’TOF_Flag’, NCCHAR, 2, ’No’, iret)

call ncaptc(ncid, NCGLOBAL, ’BuildingBlocks’, NCCHAR, 31, ’Monochr

1omator, Sample, Detector’, iret)

call ncaptc(ncid, NCGLOBAL, ’Monochromator’, NCCHAR, 7, ’Crystal’,

1 iret)

call ncaptc(ncid, NCGLOBAL, ’MCrystal’, NCCHAR, 9, ’Ge (110) ’, ir

1et)

call ncaptc(ncid, NCGLOBAL, ’PhaseName’, NCCHAR, 9, ’Aquavit-B’, i

1ret)

call ncaptc(ncid, NCGLOBAL, ’SampleDescription’, NCCHAR, 38, ’Bull

1etin f. Chemistry (7), 1888, 34-67’, iret)

call ncaptc(ncid, Temperatureid, ’Units’, NCCHAR, 6, ’Kelvin’, ire

1t)

call ncaptc(ncid, Pressureid, ’Units’, NCCHAR, 3, ’bar’, iret)

call ncaptc(ncid, Cellid, ’Units’, NCCHAR, 14, ’nm and degrees’, i

1ret)

24

call ncaptc(ncid, Absorptionid, ’Units’, NCCHAR, 4, ’Rehe’, iret)

call ncaptc(ncid, NCGLOBAL, ’SampleGeometry’, NCCHAR, 8, ’Cylinder

1’, iret)

call ncaptc(ncid, NCGLOBAL, ’DetectorType’, NCCHAR, 10, ’Powder-PS

1D’, iret)

call ncaptc(ncid, Wavelengthid, ’Units’, NCCHAR, 2, ’nm’, iret)

call ncaptc(ncid, StartTwoThetaid, ’Units’, NCCHAR, 6, ’degree’, i

1ret)

call ncaptc(ncid, TwoThetaIncrementid, ’Units’, NCCHAR, 6, ’degree

1’, iret)

C--

* leave define mode

call ncendf(ncid, iret)

* store Temperature

corner(1) = 1

edges(1) = 1

C !!!

C Delete all the data statements in the following section and

C replace them by assignements to your values.

C Call your subroutines which return the values needed to fill

C in the variables. Such as Temperature, Cell,

C

data Temperature /290/

call ncvpt(ncid, Temperatureid, corner, edges, Temperature, iret)

* store Pressure

corner(1) = 1

edges(1) = 1

data Pressure /1/

call ncvpt(ncid, Pressureid, corner, edges, Pressure, iret)

* store Cell

corner(1) = 1

edges(1) = 6

data Cell /2.3, 2.3, 4.5, 90, 90, 90/

call ncvpt(ncid, Cellid, corner, edges, Cell, iret)

* store Absorption

corner(1) = 1

edges(1) = 1

data Absorption /0.80000001/

call ncvpt(ncid, Absorptionid, corner, edges, Absorption, iret)

* store Wavelength

corner(1) = 1

edges(1) = 1

data Wavelength /0.12/

call ncvpt(ncid, Wavelengthid, corner, edges, Wavelength, iret)

* store StartTwoTheta

corner(1) = 1

edges(1) = 1

25

data StartTwoTheta /22/

call ncvpt(ncid, StartTwoThetaid, corner, edges, StartTwoTheta, ir

1et)

* store TwoThetaIncrement

corner(1) = 1

edges(1) = 1

data TwoThetaIncrement /0.2/

call ncvpt(ncid, TwoThetaIncrementid, corner, edges, TwoThetaIncre

1ment, iret)

* store Counts

corner(1) = 1

edges(1) = 3

data Counts /2, 2, 2/

call ncvpt(ncid, Countsid, corner, edges, Counts, iret)

C---

call ncclos (ncid, iret)

end

26

Chapter 2

Details of the scientific
dataformats compared

2.1 HDF

HDF has been developed by the National Center for Supercomputing Applica-
tions at the University of Illinois, USA. HDF is a abreviation for Hierarchical
Data Format. This name can be understood by a short description of the actual
file format. HDF is organized like a book. At the beginning there is a table
of contents which points to chapters, where the actual data are stored. So the
internal structure of the file is like a hierarchy. A benefit of this technique is
that HDF files are selfdescribing. In addition it is expandable. Currently HDF
supports the following datatypes:

• 8– and 24–bit raster images and colour palettes for these pictures.

• textual annotations to data.

• free form tables of data.

• scientific data as multidimensional arrays of 8–, 32–, 64–bit Integers and
32– and 64–bit floating point values.

All data is stored in binary format. The people at NCSA promise to include
further data formats to their system if necessary. Proposed are formats for
TV and voice. Work is in progress to provide an interface for netCDF type
data (Described later). HDF comes with a public domain library of access

27

functions callable from C and FORTRAN. HDF is portable on all hardware
platforms popular among scientists (PC, Mac, UNIX, VMS). Compression
is supported only for bitmapped images, not for scientific data. But we would
be free to add a compressed format to HDF. HDF is supported by AVS, IDL
and a public domain visualisation package called SciAn. Furthermore software
tools are available to manipulate HDF–data:

• an editor, which allows for easy viewing of file contents and some manip-
ulations.

• a tool, which displays the list of contents of a HDF file.

• various conversion utilities for bitmap data.

• compression utilities for 8–bit raster images.

2.2 FITS

FITS is probably the oldest data format to be discussed. It has evolved in the
astronomycal community since the 70’s. Its primary purpose was to transport
digital images. That’s why FITS is a abreviation for Flexible Image Transport
System. Over the years support for some more data structures was added. Now
FITS is capable of storing:

• multidimensional floating point and Integer arrays.

• ASCII– and binary tables.

Further data formats such as binary dumps or compressed data are proposed
but not yet standardized. A FITS file consists of a sequence of HDU’s. A HDU
is a header data unit. These HDU’s contain a description of the data stored
and the actual data themselves. Header Infomation is ASCII, while data may be
stored as binary. FITS is maintained by a committee of the IAU (International
Astronomers Union). FITS is also approved by NOST (Nasa organisation for
Standardization) and is the official means of data transfer with NASA. Visual-
isation support for FITS is included in a special astronomers package for IDL.
A AVS-module for reading FITS data is available. Futhermore a public domain
FORTRAN library for reading and writing FITS data has been published. Be-
sides that, support for FITS in the application programmers community seems
to be sparse.

28

2.3 CIF

CIF is Crystallographic Interchange Format. CIF has been devised by the IUCR
(International Union of Crystallographers) as a standardized method for stor-
ing and exchanging results of crystal structure refinements. The format is pure
ASCII. Any possible parameter has got a unique name, specified in a dictionary.
There are fields defined for observed structure factors. No means for storing pro-
files or large amounts of binary data are provided. No known data visualisation
package supports CIF. Clearly, CIF should be supported by molecular graphics
packages and structure drawing programs.

2.4 CDF

CDF is a predessor of netCDF, developed by the National Space Science Center,
USA. NetCDF branched from CDF in some stage, both data formats developed
independently but ended up in quite similar specifications. So, CDF gives the
same functionality (besides minor differences) as netCDF. Yet, netCDF seems to
have the better support in the application developers community. Nevertheless,
IDL and AVS can read CDF data.

2.5 STEP/Express

STEP/Express is an effort of the engineering community to simplify the data
exchange between all stages of designing, producing and maintaining a product
within an enterprise. This means integrating CAD, CAM etc applications with
database management applications, version control programs and management
information systems. This whole effort is an ISO standard. STEP/Express
consists of several parts:

• a data description language called Express, which is used to model data
within STEP

• a Data interchange format based on Express descriptions of the data. This
file format is defined as ASCII files in order to obtain maximum portability
across platforms.

• a standard interface to DBMS-systems

• for the future the integration of STEP with knowledge based systems is
planned.

29

Some software for interpreting Express files and a programming interface for a
database based on Express is available at RAL. There are thoughts on using this
system at ISIS to store run and instrument information in a database. However,
the STEP interchange format is not supported by visualisation packages, only
translators to some CAD systems exist. ASCII files as means of data storage
are very portable but impose some performance overhead on any application
due to the necessity of interpretation. Furthermore there is the danger of a loss
in precesion in floating point values stored in ASCII-files.

30

